
Supplementary Materials: Temporal scaling in

information propagations

Junming Huang1 Chao Li1,2 Wen-Qiang Wang2

Hua-Wei Shen1 Guojie Li1 Xue-Qi Cheng1

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
People’s Republic of China
2 Web Sciences Center, School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, Sichuan,
People’s Republic of China
∗ Corresponding Author: shenhuawei@ict.ac.cn

Contents

S1 Dataset 1

S2 Problem statement 3

S3 Inference 3

S4 Baselines 5

S5 Evaluation metrics 6

S6 Experiment settings 7

S1 Dataset

The dataset we use in all experiments is a benchmark dataset that was released
as a task of the 13th International Conference on Web Information System
Engineering (WISE 2012 Challenge). The dataset contains crawled users and
retweeting behaviors between Aug 24, 2009 and Dec 31, 2011 1 from a Chinese
social media website Sina Weibo (http://www.weibo.com). We cleaned the data
by removing inactive users and unpopular messages. We also removed spam
users who abnormally retweet a single message for hundreds of times. We built
a directed edge (vi, vj) if the user vj directly retweeted no less than 10 messages

1WISE officially declares the end date of crawling as Dec 2011. However, we actually find
records in Jan and Feb 2012.

1

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (days)

C
ou

nt

Figure S1: Distribution of latency on all data. The fast decaying tail attributes
to incomplete crawling, as fitted with a solid curve representing the modification
of such an incomplete crawling.

that were previously posted or retweeted by vi. We remove cascades whose
propagation trees are not completed crawled, i.e., some retweeting behaviors
are missing. Basic statistics of the dataset is reported in Table S1.

The distribution of latency in the dataset is shown in Figure S1, with a tail
decaying faster than a power law. That tail does not mean that the power-law
decaying manner is violated, but instead attributes to the incomplete crawling.
Suppose the crawling time window lasts for L days. An example with tk,i located
in the crawling time window, is observed with l-day latency only if the time
stamp tk′,j = tk,i−τi,j,k is also located within the crawling window. Suppose tk,i
is uniformly distributed in the crawling window, such an example is observed
with the probability L−l

L . Specifically, instead of the formula P (τ) ∝ τ−1.27

suggested in Figure 1(e), a slight modification P (τ) ∝ τ−1.27 ∗ 400−τ
400 fits the

observed data well, shown as a solid curve in Figure S1. The length is set to
400 days for best fit, much shorter than the total length of the dataset crawling
window (Aug 2009 - Dec 2011), implying that most crawled records concentrate
in the last year as the rapid growing of Sina Weibo. Therefore, in the report we
do not show the tail with incomplete data.

2

S2 Problem statement

Consider an underlying social network (graph) G = (V,E). A node vi ∈ V is an
individual. An edge (vi, vj) ∈ E means that vj follows vi, i.e., a message could
propagate from vi to vj . We say vi is a followee of vj , and vj a follower of vi.

In a social media scenario, we define a cascade as a tree consisting of an
original message and all messages retweeted from it. With the typical setting
of Independent Cascade model, in a cascade each node can be in either state:
active or inactive. Once an individual retweets a message in the cascade, she
turns into the active state and is added into the cascade. Otherwise she remains
inactive. Every time vi posts or retweets a message, she attempts to activate
all her inactive followers with one chance. An inactive follower vj chooses either
to become active by retweeting that message posted/retweeted by vi, or to stay
inactive by neglecting the attempt. If vj retweets it, we say vi successfully
activates vj and record the example {vi, vj , k} as a positive example, denoted as
δi,j,k = 1. If vj neglects it, we say vi fails to activate vj and record the example
{vi, vj , k} as a negative example, denoted as δi,j,k = 0.

For each example {vi, vj , k}, its latency τi,j,k is recorded to measure the time
span since the latest time vj retweets a message from vi till the time vj decides
to retweet the message k from vi or not. For a positive example, the decision
time equals to tk,j , the time vj retweets message k posted/retweeted by vi. For
a negative example, the decision time equals to tk,j , the time vi posts/retweets
the message k and attempts to activate vj . The latter is an approximation since
we do not know the exact time when vj decides not to retweet, however, the
error (indeed the latency) is negligible since a latency is usually several minutes
or hours [S2] while a typical latency lasts for several days or weeks.

In an information cascade Ck, all positive examples consist a directed tree
with a sequence of events tracking how information k propagates on G.

Ck = {(vi, vj , tk,j), (vj , v′j , tk,j′), . . . }

where each tuple (vi, vj , tk,j) describes an event that a node vi activates its
follower node vj at time tk,j . If a node is not activated with message k, it does
not appear in the sequence Ck.

S3 Inference

For Deday model, hidden variables {q,α} are inferred with a maximum a pos-
teriori probability strategy. Priors are introduced to avoid over-fitting, since a
typical edge carries few examples that could be insufficient to support a stable
statistical estimator. For the Decay model, we assign two priors to the two
classes of hidden variables respectively, i.e., qi,j follows an exponential distri-
bution Exp(λ) bounded in [0, 1], while αi,j follows a log-normal distribution
lnN(µ, σ2), capturing the prior knowledge learned in the empirical study that
α is roughly 1.0 (slope in Figure 1(f)) and ln q is close to 0.1 (intersect in Fig-
ure 1(f)).

3

P (qi,j) =
λ

1− e−λ
e−λqi,j , λ > 0 (S1)

P (αi,j) =
1

αi,j

√
2πσ2

e−
(lnαi,j−µ)2

2σ2 , µ ∈ R, σ > 0

Then the posterior distribution of hidden parameters should be

P (q,α|data) ∝
∏

(vi,vj)∈E

λ

1− e−λ
e−λqi,j

1

αi,j

√
2πσ2

e−
(lnαi,j−µ)2

2σ2

∏
k∈K+

i,j

qi,jτ
−αi,j

i,j,k

∏
k∈K−

i,j

(
1− qi,jτ

−αi,j

i,j,k

)
,

where K+
i,j is the set of messages that vi posts/retweets and then vj retweets,

while K−
i,j is the set of messages that vi posts/retweets and then vj ignores.

Maximizing the above posterior probability against hidden parameters, we
obtain a maximum a posteriori probability estimation. Practically we use the
logarithm of the above posterior probability instead for ease of float calculations.

{q̂, α̂} = argmax
q,α

lnP (q,α|data)

= argmax
q,α

∑
(vi,vj)∈E

(
lnλ− ln(1− e−λ)− λqi,j −

1

2
ln(2πσ2)− lnαi,j −

1

2σ2
(lnαi,j − µ)2

+
∑

k∈K+
i,j

(ln qi,j − αi,j ln τi,j,k) +
∑

k∈K−
i,j

ln
(
1− qi,jτ

−αi,j

i,j,k

) .

(S2)

In practice we choose simple values of hyperparameters λ = 1, µ = 0 and
σ = 1, start from a random initial guess and iteratively update parameter
values with partial gradients of the logarithm posterior probability as follows,
until convergence.

∂

∂qi,j
lnP (q,α|data) = −λ+

∑
k∈K+

i,j

1

qi,j
−

∑
k∈K−

i,j

1

τ
αi,j

i,j,k − qi,j
(S3)

∂

∂αi,j
lnP (q,α|data)

=− 1 + (lnαi,j − µ)/σ2

αi,j
−

∑
k∈K+

i,j

ln(τi,j,k)−
∑

k∈K−
i,j

qi,j ln(τi,j,k)

qi,j − ταi,j,k

(S4)

4

In order to validate the consistence of our models, we create a synthetic
dataset to examine whether our inference process can correctly recover hidden
parameters {q,α} if user behaviors are indeed generated with our probability
models. We build a single directed edge (Alice,Bob) with a random selected
qAlice,Bob ∈ [0, 1] and αAlice,Bob ∈ [0, 2] for example. At every time step tk, Alice
posts a message k, and Bob immediately decides whether to retweet k with a
probability described in Equ. 2, where the latency τAlice,Bob,k is calculated by
tk minus the latest time Bob retweeted a message. The probability of the first
message is set to 1 in order to avoid the difficulty in calculating latency with
no previous retweeting behaviors. We record a positive example if Bob decides
to retweet, while a negative example if Bob neglects. After Bob retweets a
predefined number of messages, e.g., 10 messages, we stop the simulation and use
the generated examples to train our model to estimate qAlice,Bob and αAlice,Bob.
We vary the predefined number of retweeted messages in simulations from 10
to 100, and build 10, 000 edges to repeat the simulations. The accuracy of
estimation {q̃, α̃} is measured with mean absolute error, i.e., E [|q̃ − q|] and
E [|α̃− α|]. As reported in Figure S2, our models accurately recover the hidden
parameters with an MAE near 0.2 requiring only 10 retweets, and the estimation
error further decreases to a fair level when the number of retweeting behaviors
grows.

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

Number of retweets

M
ea

n
ab

so
lu

te
 e

rr
or

q
α

Figure S2: Estimating hidden parameters on synthetic data. The mean absolute
error between the estimation and the ground truth decreases with increasing
number of retweeting behaviors.

S4 Baselines

Following 4 mainstream baselines are implemented to compare with our models.
Those baselines are proposed to estimate propagation probabilities based on

5

retweeting behavior logs only. Other methods requiring user profile or message
content are not applicable in the dataset.

• MLE. The simplest algorithm outputs an edge propagation probability
as the ratio of successful attempts over all attempts on that edge. The
method provides a maximum-likelihood estimation, assuming static prob-
abilities.

• Static Bernoulli and Static PC Bernoulli proposed in [S3]. The
method scans action log containing the activation time stamps of each
node in each cascade, on a known social network. We implement all 12
versions described in [S3] and for simplicity only report the two with the
best performance on the dataset, namely Static Bernoulli with stat-
ic Bernoulli propagation probabilities and Static PC Bernoulli with a
partial credit strategy.

• EM algorithm proposed in [S4]. On a known social network, the method
assumes a static propagation probability on each edge and runs a maximum-
likelihood estimation on the action log containing only activation time
stamps of each node in each cascade. It considers discrete time rather
than real continuous time, i.e., if vi activates vj in a cascade, their time
stamps differ by one. Therefore we slightly modify our dataset to make
it appropriate for the method. In each cascade Ck, we assign ti,k = 0 if
node vi is the root of the cascade, or assign tj,k to the depth of vj in the
cascade from the root node. i.e., we build a directed tree for Ck where
each directed edge (vi, vj) represents an event that vi activates vj in the
cascade, and label ti,k as the depth of vi in the tree.

NetInf [S5] was also implemented. That method simultaneously estimates
an unknown social network and propagation probabilities given action log. It
leverages the waiting time of each retweeting behavior to estimate propagation
probabilities. However, it meets a serious scalability problem that it cannot
finish inference on a real-world scale large dataset such as what we use in this
paper within acceptable time. Tests on a smaller sample shows that its perfor-
mance is no better than EM. Therefore we didn’t report its performance in our
report.

S5 Evaluation metrics

Perplexity : the metric used to measure the ability a probabilistic model (e.g.,
our Decay model) generates observed examples. In our paper, we train a prob-
abilistic model on the training set and evaluate it with its perplexity on the
testing set, in order to measure how the testing examples surprise the trained
model. A lower perplexity indicates better performance.

perplexity = e−
∑

{vi,vj,k}∈Dtest
δi,j,k ln P̃ (δi,j,k=1)+(1−δi,j,k) ln(1−P̃ (δi,j,k=1))

|Dtest| (S5)

6

where Dtest represents the testing set, and P̃ (δi,j,k = 1) is the estimated prob-
ability that vj retweets message k from vi.

AUC : the area under the Receiver Operating Characteristic curve, used to
evaluate a binary classification problem, namely retweeting prediction in our
experiments. Dislike the perplexity, AUC is independent from the ratio of pos-
itive and negative examples, and therefore suitable for datasets where positive
and negative examples are imbalanced. AUC is equivalent to the probability
that a trained model correctly tells a randomly selected positive example from
another randomly selected negative example. Obviously a higher AUC indicates
a better model [S1].

S6 Experiment settings

In the viral marketing experiment, we split the data into 4 groups with respect
to example time stamps. Each group contains examples in 30 weeks, divided
into a 205-day training phase and a 5-day evaluation phase, as shown in Ta-
ble S3. In each evaluation phase, we build a propagation network G′ = (V,E′)
as a subgraph of the social network, with edges on which at least one actual
retweeting behavior occur in the evaluation phase. Roughly speaking, 1% edges
should survive in such a subgraph, since the positive examples occupies about
1% of all examples in the dataset, which reveals that the global average prop-
agation probability is around 0.01. The length of the evaluation phase is then
determined such that |E′| = 0.01|E|.

References

[S1] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[S2] Peng Bao, Hua-Wei Shen, Junming Huang, and Xue-Qi Cheng. Popular-
ity prediction in microblogging network: a case study on sina weibo. In
Proceedings of the 22nd international conference on World Wide Web com-
panion. International World Wide Web Conferences Steering Committee,
2013.

[S3] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Learning in-
fluence probabilities in social networks. In Proceedings of the third ACM
international conference on Web search and data mining, pages 241–250,
1718518, 2010. ACM.

[S4] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of Infor-
mation Diffusion Probabilities for Independent Cascade Model, volume 5179
of Lecture Notes in Computer Science, chapter 9, pages 67–75. Springer
Berlin Heidelberg, 2008.

7

[S5] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Infer-
ring networks of diffusion and influence. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 1019–1028, 1835933, 2010. ACM.

Table S1: Data statistics.
Statistics Value

Num of users 496,929
Num of edges 1,215,116

Num of cascades 8,005,507
Num of positive (retweeting) examples 19,688,837
Num of negative (neglecting) examples 2,126,313,325

Table S2: Notations
Notation Meaning
vi ∈ V Node (user);

(vi, vj) ∈ E Edge where user vj follows vi;
qi,j ∈ [0, 1] Base probability associated with the edge (i, j);

αi,j ∈ (0,+∞) Decaying parameter associated with the edge (i, j);
tk,j Time stamp when vk retweets a message k;

δi,j,k
Label to indicate whether a node vi activates a
follower node vj at time tk,j with a message k;

τi,j,k ≥ 1

Latency between the latest time vj was activated by vi and
the current time vj was activated by vi with a message k,
i.e., τi,j,k = tk,i − tk′,j , where k′ is the latest message
with which vi activates vj ;

λ, µ, σ2 Hyperparameters to provide priors of q and α.

8

Table S3: Phases in viral marketing experiment.
Training phase starts Training phase ends Evaluation phase starts Evaluation phase ends

23 Aug 2009 16 Mar 2010 16 Mar 2010 21 Mar 2010
16:00:00 UTC 09:59:59 UTC 10:00:00 UTC 10:00:00 UTC
26 Mar 2010 17 Oct 2010 17 Oct 2010 22 Oct 2010
10:00:01 UTC 03:59:59 UTC 04:00:00 UTC 04:00:00 UTC
27 Oct 2010 19 May 2011 19 May 2011 24 May 2011
04:00:01 UTC 21:59:59 UTC 22:00:00 UTC 22:00:00 UTC
29 May 2011 20 Dec 2011 20 Dec 2011 25 Dec 2011
22:00:01 UTC 15:59:59 UTC 16:00:00 UTC 16:00:00 UTC

9

