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Abstract. Previous works indicated that pairwise methods are state-
of- the-art approaches to fit users’ taste from implicit feedback. In this
paper, we argue that constructing item pairwise samples for a fixed user
is insufficient, because taste differences between two users with respect
to a same item can not be explicitly distinguished. Moreover, the rank
position of positive items are not used as a metric to measure the learn-
ing magnitude in the next step. Therefore, we firstly define a confidence
function to dynamically control the learning step-size for updating model
parameters. Sequently, we introduce a generic way to construct mutual
pairwise loss from both users’ and items’ perspective. Instead of user-
oriented pairwise sampling strategy alone, we incorporate item pairwise
samples into a popular pairwise learning framework, bayesian personal-
ized ranking (BPR), and propose mutual bayesian personalized ranking
(MBPR) method. In addition, a rank-aware adaptively sampling strategy
is proposed to come up with the final approach, called RankMBPR. Em-
pirical studies are carried out on four real-world datasets, and experimen-
tal results in several metrics demonstrate the efficiency and effectiveness
of our proposed method, comparing with other baseline algorithms.*

1 Introduction

Building predictor for top-k recommendation by mining users’ preferences from
implicit feedback [1] can help to produce recommendations in a wide range of
applications [14, 9,15, 17]. One significant challenge is that only positive observa-
tions are available. For example, we can only observe that a user bought a book,
or a movie ticket from the web logs. Such issue is called “one-class” recommenda-
tion and many works have offered solutions to measure relevance of a user-item
pair by transforming traditional rating estimation problem to a ranking task.
To solve the one-class recommendation problem, Rendle et al. [2] proposed
bayesian personalized ranking (BPR), a popular pairwise learning framework.
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Different from pointwise method dealing with a regression problem [5], BPR is
built under assumption that everything that a user has not bought is of less
interest for the user than those bought items. Empirically, pairwise ranking
methods can perform better than pointwise approaches, and have been used as
the workhorse by many recommendation approaches to tackle challenges from
different applications, like tweet recommendation [22], tag recommendation [9],
relation extraction [7], entity recommendation in heterogencous information net-
work [21] ete. In addition, many works aiming to optimise pairwise preference
learning for one-class recommendation problems are recently proposed via lever-
aging novel information like social connection [19], group preference [8], or im-
proving the strategy of selecting pairwise samples [3].

To the best of our knowledge, current pairwise learning methods [2, 19, 20,
8] construct pair examples from the user side. In this paper, we argue that
unilaterally constructing samples from users’ perspective is insufficient based
on one main reason: taste differences between two users with respect to a same
item can not be explicitly distinguished. Therefore, we introduce mutual bayesian
personalized ranking (MBPR) to offer alternative idea to express the pairwise
interactions, instead of the user-based pairwise preference alone. In addition,
inspired by the recent literature [3], we optimize the sampling strategy of MBPR,
via utilising the rank position of positive samples to dynamically control the
learning speed. Experimental results on four real-world datasets show that our
proposed method significantly improves the performances comparing with other
baseline algorithms on four evaluation metrics.

2 Preliminary

Let & and Z denote the user and item set, respectively. We use 7 to denote
the observed feedbacks from n users and m items. Each case (u,7) € 7 means
that user u ever clicked or examined item 4. For a given user u, the relationship
between user u and item i can be measured as x,;, then a recommendation list
of items could be generated from items Z \ Z,,, where Z,, denotes the clicked or
examined items by user u. In practise, only top-k recommendations can attract
users’ attention, and recommendation task in such a case can be modified as
a learning to rank problem. In order to represent user u’ preference over items
with only “one-class” observations 7, pairwise learning approaches typically
regard observed user-item pairs (u,i) € T as a positive class label, and all other
combinations (u,7) € (U x T\ T) as a negative one. Then intermedia training
samples (u,,j) € Dy are constructed according to assumption 1.

Assumption 1 For a given user u, unequal relationship exists between the ex-
amined item i and the unexamined item j, and user u would show more prefer-
ence to item i than item j.

2.1 Bayesian Personalised Ranking (BPR)

For a given user u, the relationship between user u and item ¢ can be measured
as x,;- BPR will fit to the dataset Dy to correctly learn the ranks of all items
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via maximizing the following posterior probability of the parameter space 6.

p(0] >u) o< p(>u |0)p(6), (1)

where notation >,= {i >, j : (u,%,j) € D7} denotes the pairwise ranking
structure for a given w, and p(f) is the prior probability of parameter space 6.
Then BPR assumes that each case of >, is independent, and the above likelihood
of pairwise preferences (LPP) can be modified as LPP(u) =[], ; jyep, P(i >u
jl0), where p(i >, j|0) = o(xu;(0)), and o(z) = H% In terms of p(#),
we define it as a normal distribution with zero mean and covariance matrix
Y9 = Ao, that is, 6 ~ N'(0,3",). Now we can infer the BPR by filling p(6) into
the maximum posterior probability in Equation (1).

A
InLPP(u) +lnp(0) = > lno(xuij)—gel\@IIQ, (2)
(u,i,5)€DT

where \g are model regularization parameters. Here we choose ;;(6) = xu; —
Zj. The specific definition of the preference function used in this paper is z,; =
by + b; + W, V;T, where W € RUI*d 1 ¢ RIZIX4 and d is the number of latent
factors. b, and b; are bias features for each user u and for each item i, respectively.
Therefore, z,;;(6) = b; + WuViT —b; — WuV;'— Generally, stochastic gradient
descent based algorithms can be used as a workhorse to optimise the posterior
distribution. More specifically, the parameters € are randomly initialized. With
iteratively traversing each observation (u,i) € T, a negative sample j is picked
and parameters 6 can be updated with gradients as shown in Equation (3) until
the stopping criterion is matched, and return the learned model.

OlnLPP(u) Oy

0 < 0+ o 90 (2) 50

— Aob) 3)

According to literature [2], the way to select a negative j could have significant
impact on the performance of BPR. Typically, a bootstrap sampling approach
with replacement is suggested, i.e. for a given (u, 1), j is randomly selected out
depending on an uniform distribution. However, Rendle et al. [3] argued that for
a given user u, good negative samples which could make an effective updating
could lie in a higher position than positive item i. While, uniform sampling
could equally regard each negative item without taking the ranks of positive
items 4 into consideration. Sequently, Rendle et al. [3] proposed a novel adaptive
sampling strategy after giving insight into the learning diagram, especially the
evolution of gradient distribution. Series of experiment results demonstrate that
adaptive sampling a negative j according to their position in the rank list could
improve the convergence speed and effectiveness of BPR. In more detail, the
adaptive sampling strategy is described as follows:

For sampling a negative item j for the given (u, i), we firstly extend both user’s
and items’ latent feature, that is, W, = [1, W,,], VI = [b;, Vi].

1. Sample a rank r from distribution p(r) o exp(;—?”), where ~; is a hyperpa-
rameter controlling the expectation position of sampled item j. A small value
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of 7; could generate a small value of r with a high probability. It indicates
that a negative item j ranking in a high position could be probably sampled.
2. Sample a factor dimension d according to probability distribution p(d|u) o
|W! ;|64, where 64 denotes the variance over all items’ dth factor, and W},
denotes the value of user u’s dth factor.
3. Sort items according to V,: 4> and return the item j on position r in the sorted
list.

However, as we see, about |Z\Z,| negative cases need be examined for each given
(u,4). If the number of items in the database is enormous, the scale of negative
candidates make it intractable to directly apply such strategy. In order to reduce
the complexity, Rendle et al. proposed to pre-compute the ranks every |Z|log|Z]|
training cases.

Iterationt||-||||-|||

top bottom

j
terationt+1 [T T [ T [ | W T T 1]

1
top bottom

Fig. 1: Simple illustration to describe the item permutation for user w in different
learning stages. The term ”top” and ”bottom” stands for the top and bottom position
in the rank list, respectively.

3 Our Solution

3.1 Rank-aware Pairwise Learning

In last Section 2.1, we can see that adaptively ranking the items could be imple-
mented every a fixed steps in order to abate the computation cost. However, we
argue that it still needs to sort |Z\ Z,| items for each u € U, which will dramati-
cally increase the computation resources with the growth of the size of user and
item set. Moreover, the rank position of the positive item i is not utilized as a
significant criterion to measure the learning performance. One basic assumption
of adaptive sampling is that selecting the negative sample j ranking in a higher
position could help to find a good case to effectively update pairwise parameters.
However, it omits that the ranks of positive item ¢ when utilizing the benefits
brought by the position information of negative item j. We believe that utilising
the rank information of positive item i is crucial to offer an alternative way to
improve the performance of pairwise learning algorithm based on BPR.

Let 7}" denote the item permutation of user w in the iteration ¢, and 7} (%)
represents the position of item 7. Suppose that for a given (u,4) € T in iteration ¢,
73 (i) is very close to the bottom as it is shown Figure 1. At that moment, user u’s
preference over positive item ¢ is insufficiently learned under this situation. It still
has a huge position gap between item i and j. If we sample the negative j which
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ranks much higher than a positive item 4, we should update the corresponding
parameters with a large magnitude due to the significant position gap. If positive
item 4 ranks closely to the top position in iteration ¢ + 1, we could say that
preference function x,; is learned well for this case, then we should update
parameters with a slight step size. Therefore, we propose to transform the rank
information as a crucial criterion to support the updating magnitude of model
parameters.

To tackle the aforementioned challenge, we propose rank-aware bayesian
personalized ranking (RankBPR) to utilize the rank position of item i for a
given (u,i). We define a confidence function C,(rank;), which serves as dy-
namic weight to control the updating step size of model parameters. Generally,
Cy(rank;) is a monotonically increasing function. By integrating C,, (rank;) into
Equation (2), we obtain the rank-aware bayesian personalised ranking (RankBPR),
and the objective function can be modified as follows:

InLPP(u)+Inp(0) = Y > Culrank:) Y no(zui;) — Nell0]|*. @)

weU i€T, JEI\T,

Correspondingly, the flow of stochastic gradient as shown in Equation (3) could
be revised as follows:

OlnLPP(u) 0xyij

0« 0+ a(Cy(rank;) 90() 20

— Xob) (5)

As we see, the key part of the confidence function lies in the rank position of
item 4. In this work, we define C,,(rank;) as follows:

rank;

Cy(rank;) = Z Vs, With y1 2 v2 > v3 > ... > 0.
= ()
JET\T.

where I is the indicator function, and fLm measures the relevance between user
u and item ¢. § is a margin parameter to control the gap between the positive
item ¢ and negative sample j. We choose 7, = 1/s as the weighting approach,
which could assign large value to top positions with rapidly decaying weight
for lower positions. Intuitively, a positive item ¢, which ranks in the highest
position, could produce a low confidence to update the parameters. Oppositely,
a bottom positive item i could offer a high confidence. In terms of the h,;, we
give two different definitions under the assumption that ranks of a item list
can be measured as the inner-product of user-item features or only according
to a specific dimension of users’ feature vector. For simplicity, one can denote
hwi = xyu; as a response to measure the relevance of user v and items i as the
product of their feature vectors.

By = by + b + W, VT (7)

Besides this, we suppose that the value of each element of user u’s feature vec-
tor W, can represent u’s specific taste, which drives us to rank all items only
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depending on the match score in a single dimension of feature vectors. To for-
mulate our idea, we define a probability distribution for sampling a factor d as
p(dlu) o |[Wyql|. For each training case (u,%), we firstly sample a factor d ac-
cording to p(d|u) o |Wyqa|, then calculate rank; based on the match score i
between a user-item pair:

hui = ud‘/id7 (8)

where W.4 and V.4 denotes the value of dth element.

3.2 Fast Estimating Rank Position of Item 3

Note that in each iteration, the exact value of rank; needs to be calculated for
each observation is extremely expensive, when there are massive amount of items
in the database. In this work, we employ a sampling process [10] to fast estimate
the rank;. More specifically, for a given sample (u,7), one uniformly draws a
random negative item from Z until finding a j, which satisfies § + izuj > D

Then the rank; can be approximated as rank; = LM%L where || denotes
the floor function and K is the number of steps to find a item j. From this
approximation of rank;, we can see that the computations on seeking a negative
item j could increase sharply if the positive item ¢ happens to rank at the top of
the list. To accelerate the estimation of rank;, we define a parameter x to limit
the maximum sampling steps. Correspondingly, we also utilise an item buffer
buf fery,; whose size equals to x to store every sampled negative item j. Finally,
rank; can be approximated as rank; ~ L%J, and the negative item j will
be selected from the top of the sorted buf fer,; in descending order based on
hu;j. The complete procedure of RankBPR can be described in Algorithm 1.

Algorithm 1 Optimizing models with RankBPR
Input: 7: Training Set

Output: Learned 6

1: initialize 6

2: repeat
randomly draw (u,i) from T
4 estimate C., (rank;) according to Equation (6)

5 select a negative sample j from the top of the sorted buf fery;
6: Tuij = Tui — Tuj
7
8:

0«0+ a(Cu(rcmki) . (1 — U(xuij))%xmj — AQG)
until convergence.

3.3 Mutual Sample Construction for Pairwise Learning

Beside the optimized sampling strategy, we can see that pairwise learning ap-
proaches like BPR only focus on constructing samples (u, 1, j) for a fixed user w.
In this paper, we argue that only sampling negative samples w.r.t. a fixed user
u is insufficient based on the following consideration:
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— Recommendation task naturally involves with two basic types of entities,
i.e. users and items. To better represent the relevance between them, mutual
pairwise sampling is essential to not only capture a user’s preferences over
two different items, but also measure how different is a pair of users with
respect to a same item. Intuitively, a piece of training sample (u,%,j) could
help to distinguish the difference between item ¢ and j from a user u’s per-
spective, while two different users’ preferences over the same item i could
not be explicitly represented.

In order to tackle the aforementioned challenges, we propose to construct the
pairwise loss from item’s perspective instead of the construction of pairwise train-
ing samples from user’s perspective alone. Specifically, another type of training
samples (i,u,v) € Dy for a given (u,i) € T would be extracted under the
proposed assumption 2.

Assumption 2 A group of users who ever selected the same items might have
closer tastes than other users. For a given item (u,i) € T, user u could have a
stronger preference than user v, who did not ever explicitly click or rate item 1.

We think that users purchasing the same item ¢ could have much closer con-
nection than those who do not purchase item . Following the assumption 2,
mutual sampling construction could explicitly leverage the user connection in-
formation to distinguish the differences among users. Then two types of pairwise
relationship are extracted for a given observation (u,7) € 7. To formulate our
idea, we propose mutual bayesian personalized ranking (MBPR) to incorporate
mutual pairwise samples into BPR framework. As a response to our assumption,
the basic idea of mutual pairwise sampling equals to user u- and item i-central
pairwise construction. Therefore, two kinds of pairwise likelihood preferences, i.e.
p(i >, j|0) and p(u >; v|f), are instantiated. The modified objective function
we are going to maximise in this work is described as follows:

In LPP(u) + In LPP(i) + Inp(0)
= Z lna(xuij) -+ Z llld(l'iuv) — %HQ”Q (9)

(u,i,5)€DT (4,u,v)EDT
Different from standard BPR, mutual pairwise samples are constructed. In MBPR,
for each observation (u,i) € T, a negative item j € Z\ Z,, and user v € U \ Y;
are picked and parameters 6 can be updated with the following gradients

OlnLPP(u) 0xyij . Ol LPP(i) 0%
00 (Tyij) 00 00 (Tiuy) 00
where U; denotes the set of users who ever clicked item ¢. By employing rank-
aware sampling approach, we further apply mutually dynamic sampling strategy
to optimise the procedure of MBPR on selecting the negative samples and pro-

pose RankMBPR, in which parameters 6 would be updated with the modified
gradients:

0+ 0+ of

—Nf) (10

OlnLPP(u) 0%y
(90'(.%7”']‘) 00

OInLPP(i) Oziuy

0« 0+ a(Cy(rank;) B0 i) 20

+ Ci(rank,) — Aob),

(11)
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where C;(rank,) can be calculated in the same way as C,,(rank;) with a slightly
different definition as follows:

rank,
Ci(rank,) = Z Ve, With 41 > 72 > 73 > ... > 0
s=1 (12)
rank, = Z I8 + hiy > iyl
’UGZ/{\Z/[i
Datasets #Users #ltems #QObservations  #Density
ML100K 943 1682 100000 6.3%
Last.fm 1892 17632 92834 0.28%
Yelp 16826 14902 245109 0.097%
Epinions 49289 139738 664823 0.02%

Table 1: Statistics of the datasets

4 Experiments

Datasets & Settings: Four datasets? are used in this paper and statistics of
them are summarized in Table 1. In this work, we adopt 5-fold cross valida-
tion method to demonstrate the performance of our proposed approach. More
specifically, repeated validation experiments are conducted 5 times, in which we
randomly select 80% of observed feedback as training set to train the ranking
model, and the rest as the testing set. The final performance of each algorithm
is measured as the average results on four top-N metrics, which are used to com-
pare the performance in measuring recall ratio (Recall@5, Recall@10), precision
of top-10 recommendation list (MAP@10, MRR@10). We mainly compare our
method with the following approaches:

— PopRec: A naive baseline that generates a ranked list of all items with
respect to their popularity, represented by the number of users who ever
rated, or clicked the target items.

— WRMEF: This method defines a weight distribution for each (u,i) € U x
7, then employs matrix factorization model to solve a regression problem
via optimizing a square loss function [5]. It is the state-of-the-art one-class
collaborative filtering method.

— ICF: Item-based CF is a classical collaborative filtering approach, and was
initially explored in the literature [13]. It is a generic approach which could
be used for rating prediction and item recommendation with only implicit
feedback.

— BPR: This method uses a basic matrix factorization model as the scoring
function and BPR as the workhorse to learn the ranks of items [2].

— AdaBPR: This method is slightly different from BPR-MF as an adaptive
sampling strategy is proposed to improve the learning efficiency of BPR [3]

2 http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/hetrec-2011/
http://www.yelp.com/dataset_challenge
http://www.trustlet.org/wiki/Epinions
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— StaticBPR: This method replaces the uniform sampling strategy with a
static sampling strategy according to the popularity of items [3].

Last.fm Last.fm Last.fm
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Fig.2: Learning curves of different BPR-based algorithms in several evaluation met-
rics. In this case, we set dimension d to 30, and each algorithms iterated 2000 times.
RankBPR-full takes Equation (7) as the relevance function for RankBPR algorithm,
while RankBPR~dim employs Equation (8). In this work, we set 3 = 1.0 for both
RankBPR-full and RankMBPR, and 8 = 0.1 for RankBPR-dim. Maximum size x of
buf fery: is fixed as 200 for RankBPR-full, RankBPR-dim, and RankMBPR.

4.1 Performance Evaluation

Convergence: Initially, we empirically study the learning curves of BPR-based
algorithms with different pairwise sampling strategies (see Figure 2) on four
datasets. Due to the limited space, we only list the learning curves on Last.fm
and ML100K. From Figure 2, we can see that all algorithms almost converge
after a number of iterations, then fluctuate in a tiny range around the converg-
ing performance in the different metrics. We can find that RankBPR  is superior
to other baselines, and RankBPR-full outperforms RankBPR-dim, which proves
the efficiency and effectiveness of rank-aware sampling strategy with definition of
hu,i in Equation (7). Therefore, the way to calculate h,, ; for RankMBPR follows
RankBPR-full. Turn to MBPR, its performance indicates that mutual construc-
tion of pairwise samples could also benefit for the pairwise learning methods. As
incorporating both features of MBPR and RankBPR, RankMBPR achieves the
best performance. From the learning curves we can see that stopping criterion
could be defined as a fixed number of iterations for BPR-based algorithms. In
this work, we set the number of iterations as 2000 for all BPR-based algorithms.
Performance Evaluation: Table 2 shows the average recommendation perfor-
mance of different algorithms. We highlight the results of the best baseline and
our proposed method respectively. Validation results show that RankMBPR is
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superior to all baseline algorithms on all four datasets. Note that MBPR also has
comparative better performance than baseline approaches. One possible reason
may be that AdaBPR pays less attention to deeply explore the effects brought
by the rank position of positive samples. In terms of WRMF, it is not directly to
optimise ranking. Comparing with BPR, our proposed methods both utilise the
differences among users by leveraging the construction of mutual pairwise sam-
ples, instead of the user-side solely, and the benefits brought by the rank-aware
sampling method. From this table, we could find some interesting evidences. As
the density of the dataset decreases, the performance gap between our proposed
method and BPR-based methods will become larger. In particularly, AdaBPR
performs not so much as ICF in the most sparse dataset, Epinions.

Datasets Metrics  PopRec ICF WRMF BPR AdaBPR MBPR RankMBPR Improv.

Recall@5 0.0553 0.0882 0.1052 0.1037 0.1123 0.1142 0.1202" 7.03%
ML100K Recall@10 0.0974 0.1473 0.1764 0.1708 0.1823 0.1876 0.1921" 5.37%
MAP@10 0.1986 0.3041 0.3591 0.3712 0.4024 0.4188 0.4312" 7.38%
MRR@10 0.5449 0.6843 0.7236 0.7389 0.7682 0.7788 0.7963" 4.39%

Recall@5 0.0476 0.1057 0.112 0.124 0.133 0.131 0.147" 10.52%
Last.fm Recall@10 0.0747 0.1546 0.169 0.191 0.202  0.201 0.218" 7.92%
MAP@I10 0.0413 0.1016 0.106 0.117 0.128 0.133 0.145" 13.28%
MRR@10 0.1995 0.4260 0.431 0.452 0.482 0.471 0.512* 6.22%

Recall@5 0.0156 0.0273 0.0262 0.0352 0.0364 0.0386 0.0406" 11.53%
Yelp Recall@10 0.0289 0.0471 0.0428 0.0596 0.0601 0.0638 0.0672" 11.81%
MAP@10 0.0098 0.0174 0.0172 0.0240 0.0242 0.0279 0.0281" 16.11%
MRR@10 0.0286 0.0459 0.0498 0.0640 0.0648 0.0724 0.0742" 14.51%

Recall@5 0.0143 0.0293 0.0227 0.0248 0.0261  0.0302 0.0347*  18.43%
Epinions Recall@10 0.0217 0.0459 0.0369 0.0416 0.0441  0.0487 0.0548"  19.39%
MAP@10 0.0097 0.0199 0.0159 0.0168 0.0178  0.0205 0.0258*  29.64%
MRR@10 0.0351 0.0617 0.0547 0.0518 0.0542  0.0628 0.0802*  29.98%

Table 2: Experimental results of all baseline algorithms. The last column shows the
improvement of the proposed method compared with the best baseline method. The
latent dimension is fixed as d = 30 for MF-based methods, like WRMF, BPR, AdaBPR.

5 Related Work

Recently many works have began to adopt learning-to-rank idea to explore users’
preference on items from ranking perspective [6, 16, 3,2,19,?,?]. As one of typi-
cal pairwise learning method, BPR is flexible to incorporate different contextual
information to make BPR adaptive to different tasks. Riedel et al. [7] employs
BPR to automatically extract structured and instructed relations. Zhao et al. [19]
indicated out that users tend to have many common interests with their social
friends, and proposed to leverage social connections to improve the quality of
item recommendation. Pan et al. [8] pointed out that group features should be
taken into account for further exploring users’ preferences on items. Rendle et
al. [9] extended BPR to learn tensor factorization method for recommending re-
lated tags to users with respect to a given item. Besides BPR, various methods
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inherit the pairwise learning idea. In [10], Jason et al. defined order pairwise
ranking loss and develop online Weighted Approximate-Rank Pairwise (WARP)
method, which can be applied to various top-k learning problems. Later, Ja-
son et al. in [11,12] presented the possible applications of WARP in video rec-
ommendation and collaborative retrieval task. Zhao et al. [20] proposed a novel
personalized feature projection method to model users’ preferences over items.
A boosting algorithm is also proposed to build ensemble BPR for one-class rec-
ommendation task.

6 Conclusions and Future Work

In this paper, we propose to complementarily distinguish users’ taste differences
from items’ side. Two kinds of pairwise preference likelihood are defined. An
improved sampling strategy is customized to our proposed method (MBPR),
then an rank-aware MBPR (RankMBPR) is introduced to help sufficiently learn
users’ preferences over items. The experimental results on four datasets show that
RankMBPR perseveres the most efficacy than all baseline algorithms. In future,
we incline to further explore the probable effects of the contextual information,
or the network structure on helping to select the good pairwise samples.
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