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a b s t r a c t 

In recent years, tagging system has become a building block o summarize the content 

of items for further functions like retrieval or personalized recommendation in various 

web applications. One nontrivial requirement is to precisely deliver a list of suitable items 

when users interact with the systems via inputing a specific tag (i.e. a query term). Dif- 

ferent from traditional recommender systems, we need deal with a collaborative retrieval 

(CR) problem, where both characteristics of retrieval and recommendation should be con- 

sidered to model a ternary relationship involved with query × user × item . Recently, several 

works are proposed to study CR task from users’ perspective. However, they miss a signif- 

icant challenge raising from the sparse content of items. In this work, we argue that items 

will suffer from the sparsity problem more severely than users, since items are usually 

observed with fewer features to support a feature-based or content-based algorithm. To 

tackle this problem, we aim to sufficiently explore the sophisticated relationship of each 

query × user × item triple from items’ perspective. By integrating item-based collaborative 

information for this joint task, we present an alternative factorized model that could bet- 

ter evaluate the ranks of those items with sparse information for the given query–user 

pair. In addition, we suggest to employ a recently proposed Bayesian Personalized Ranking 

(BPR) algorithm to optimize latent collaborative retrieval problem from pairwise learning 

perspective. The experimental results on two real-world datasets, (i.e. Last.fm, Yelp ), veri- 

fied the efficiency and effectiveness of our proposed approach at top-k ranking metric. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

In recent years, massive applications like Last.fm, LinkedIn, Douban.com build tagging system to offer alternative ap-

proach for users to expose the features of items. For example, users in LinkedIn can recommend tags to show someone’s

proficient professional skills, and Last.fm users can allocate some keywords to highlight the musical style of artists. The

emergence of tags makes content providers conveniently organise the web stuff, meanwhile allows users to search some

interested information based on a given tag. For example, Last.fm as an example, users may hope to seek a cluster of in-

terested rock artists via querying the “rock” tag, and douban users may expect to find some action movies based on the

“Action Movie” tag to spend a nice weekend. Different from traditional user–item recommendation task, such requirement
∗ Corresponding authors. 
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involves with a joint problem of producing recommendations to a particular user with a specific tag (or query). This kind of

task could be regarded as tag-driven item recommendation, which is actually an instance of collaborative retrieval (CR) [37] .

In this situation, the tag can be referred as the users’ input query since the target indexing term is the selected tag by users.

In order to deal with collaborative retrieval problem, approaches should be capable of modeling various patterns from

the query × user × item triplets instead of the traditional user × item matrix. Usually, collaborative retrieval system suffers

from more severe data sparsity than traditional tag-free recommendation services. In addition to insufficient users’ click

behaviors over items, another serious challenge is the lack of content features to present the aspects of items, or even

worse without being attached with related tags. However, such phenomenon seem to frequently appear in real application.

If we miss the consideration of this situation, many items could be unfairly evaluated in a ranked list due to the missing

tags to show its relationship with the input querying tag by users. By now, several pioneering works are capable to model

triple relationship like query × user × item . For examples, tensor factorization models [7,27,33,35] are proposed to extend

collaborative filtering to recommend items in a tensor setup, while usually designed for special recommendation tasks like

tag, mobile app, etc. Among different tensor models, Tucker Decomposition (TD) [35] encodes ternary relation into cubic

factorization dimension. The drawback of using TD is that only cubic interaction of feature vectors is modeled while pairwise

matching problem also exists in query × user × item triples to emphasize the contribution of a pair entities to the whole

triple interactions. As a special case of TD, canonical decomposition (CD) [7] also has the same problem as TD. Rendle

et al. [29] proposed that the pairwise interactions should be explicitly modeled to solve ternary tensor recommendation

problem. Hariri et al. [11] extended the Latent Dirichlet Allocation (LDA) to jointly model the users, items, and the meta-

data at topic level, while ignoring a fact that items could seriously lack of content feature to represent its characteristics. 

Recently, some works are proposed to implement collaborative retrieval task based on matrix factorization techniques.

They represent query × user × item as a user-central tripartite in hoping to leverage user-based collaborative network to

represent the ternary relationship of query × user × item . Jason et al. [37] early explored the application of tensor models,

and proposed the Latent Collaborative Retrieval (LCR) method. This method leverages user–user similarity to relief the pain

of sparsity problem caused by the sparse online users click data. However, they discard a significant challenge, i.e. the

asymmetric information of item side. In this work, we argue that (1) items suffer from the sparsity problem more severely

than users, since items are usually observed with fewer features to support a feature-based or content-based algorithm; (2)

users are dynamic while items are relatively static, which makes user–user similarity less stable and reliable than item–item

similarity. 

Items are not independent, which is indicated by an early work in [19] . Connection among them could be explored

via users’ collaborative behaviors, through which similar items will have more common users’ to show interests on them.

In addition, the characteristics of a single entity can not only be expressed by its own feature vector, but also implicitly

represented by its neighbor connections from heterogeneous entities. For instance, an item’s latent feature can be denoted

as a combination of its own tag content represented as a low-dimension feature vector, where each dimension reveals

the significance of a latent factor. Inspired by this intuition, we propose a general approach called ternary interactive item

recommendation (TIIREC) via leveraging item–item connections to better express items’ intrinsic feature. In particular, we

also explore the power of those implicit connections involved with user–query–item . In the proposed method, a user’s feature

vector is a linear combination of feature vectors of those entities which have direct connections observed from the dataset.

Viewing items as media vertices, we utilize item’s neighbors with similar tastes to overcome the sparsity problem caused

by the lack of content features. 

The TIIREC model is trained with a recent proposed pairwise learning algorithm Bayesian Personalized Ranking (BPR) [28] ,

which has been applied in many published recommendation tasks including tag recommendation [29] , focused matrix fac-

torization for advertisement [16] . As pointed out in [13,36] and verified on a real dataset Last.fm 

1 [6] , BPR significantly

reduces the runtime required to train a latent model while keeping the same performance, compared with the training

strategy Weighted Approximate-Rank Pairwise (WARP) [37] that was previously used in LCR. 

In summary, the main contributions of this paper include: 

• Comparing with WARP learning algorithm, the application of BPR algorithm on optimizing the parameters of LCR can

sharply increase the training speed and simultaneously preserve almost the same performance on evaluation metric. 
• We consider the item-based collaborative information to sufficiently alleviate the sparsity problem caused by items’ lack

of content features, and subsequently propose the TIIREC method. 
• The experimental results on the Last.fm and Yelp datasets show that the proposed algorithm TIIREC is superior to baseline

algorithms, especially, when dealing with a dataset containing a massive amount of items with sparse information. 

The remainder of this paper is organized as follows. Section 2 describes the related works. Preliminaries are introduced

at Section 3 . In Section 4 we detail research motivation and the proposed recommendation model. Experimental results are

given in Section 5 . Finally, Section 6 summarizes this work and outlooks future work. 
1 http://www.last.fm. 

http://www.last.fm
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Table 1 

Symbols used in this paper. 

Symbol Definition and description 

Q Set of queries 

A Set of items 

U Set of users 

X Training set 

D X Pairwise training samples 

σ ( ·) Sigmoid function 

f ( q, u, a ) Scoring function for measuring user u ’s prefere- 

nce on item a with respect to a given query q 

S Query feature matrix 

T Item feature matrix 

V User feature matrix 

U User encoder matrix 

A Item encoder matrix 

n Feature dimension parameter 

� Parameter space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Related work 

Recommendation and retrieval techniques have become essential components of massive applications, like e-commerce, 

search engine, location-based social network etc. In information retrieval, expected permutation of items or documents usu-

ally depend on the correlation between the content features of items and a given query by users. Many retrieval algorithms

are proposed to capture semantic relevance of query-document, like Latent Semantic Indexing [8] , LDA [5] topic model for

low-dimensional representation of the word. In addition, factorized models like Polynomial Semantic Indexing (PSI) [2] are

also employed to implement the task of document retrieval. However, they’re usually towards optimizing the AUC ranking

loss, but not top- k ranked list. In recommendation field, many works based on factorized models are proposed to produce

predictions to active users. In particular, Matrix Factorization-based methods [15,18,32,40] are very close to our method

since each entity (e.g. user, item, query) is represented as a low-dimensional feature vector. He et al. [ 12 ] review matrix

factorization problem from element-wise perspective, and proposed a fast bath optimization approach for point wise rank-

ing problem. Zhang et al. [42] presented an interesting work on extracting user collaborative network to make factorization

more efficient on dealing with different recommendation problems. They are all general framework, but only dealing with

bipartite networks. While in tag-driven tasks, search procedure begins with a tag, then items will be recommended accord-

ing to users’ historical behaviors over both tags and items. Traditional methods working on bipartite network can be applied

on user–item or item–tag, but not directly capturing triplet relationship. Several types of approaches are available to model

triple relationship, such as classical Tucker decomposition [35] , PARAFAC [10] , compact latent factor model [22] , translated-

based embedding [4] . Many context-aware collaborative filtering techniques are also proposed for such multi-relationship

learning task, in particular contextual information related to users, like tags [29] , web pages [24] , demographics [17] , tem-

poral effects [38] , multimedia retrieval for image innovation [25] , information diffusioin [43] etc. Rendle et al. [28] turned to

pairwise ranking optimization other than only rating estimation for recommendation problems with only implicit feedback.

It is a seminal research on bringing rating estimation to pairwise learning in recommendation field. Lin et al. [21] presented

theoretical analysis on different pairwise loss function, and proposed a new objective function for pairwise learning. Accord-

ing to the authors in [30,41] dynamic pairwise sampling strategy has been proposed to further improve Bayesian Person-

alized Ranking framework for top-k recommendation performance. In addition, recent works on heterogeneous information

network [23,26,31,39,44] can also be adaptive to give vision into the sophisticated interactions hidden in the complicated

dataset ( Table 1 ). 

3. Preliminaries 

In this section, problem definition will firstly be given to briefly describe the concepts of collaborative retrieval, then a

classical type of latent factor model will be described to present how to capture triple relationship from tensor perspective.

3.1. Problem definition 

The objective of collaborative retrieval can be simply defined as generating a personalized ranking list of items to fit a

particular user’s tastes with respect to a given query. To achieve this goal, the proposed approaches should clearly define a

scoring function f ( ·) to represent the relevance of a given triple (query,user,item) ∈ Q × U × A , where Q , U , A denote the

set of queries, users, items, respectively. In practice, only the top- k retrieved items could draw users’ attention. Thereby, the

learned scoring function f ( ·) should promote users’ interesting items to high position as much as possible for a particular

query. Generally, the parameters of f ( ·) can be derived from the training samples by optimizing a pre-defined ranking loss

function. 
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3.2. Latent collaborative retrieval 

The central idea of latent collaborative retrieval (LCR) is to represent each entity (e.g. user, query, item) as a n -

dimensional feature vector. Analogous to matrix factorization approaches [18] , the relationship between each pair enti-

ties can be measured by the dot-product of their latent factor vector. Formally, LCR’s parameter space includes matrices

S ∈ R 

|Q|×n , V ∈ R 

|U|×n , and T ∈ R 

|A|×n , which denotes the feature matrix of queries, users, and items, respectively. To pre-

ciously evaluate a user’s preference on a item with respect to a given query, LCR additionally allocates each user u an

encoder matrix U u ∈ R 

n ×n . The scoring function f ( ·) of LCR model can be then given as follows: 

f (q, u, a ) = S q U u T 
� 

a + V u T 
� 

a , (1)

where S q represents the row of S corresponding to query q, V u is the row of V corresponding to user u , and T a denotes the

row of T corresponding to item a . Intuitively, the first term in Eq. (1) distinguishes LCR from the proposed tensor models for

context-aware CF 2 [1,3,17,29] tasks. The second term independent of the query denotes users’ basic preferences over items. 

4. Ternary interactive item recommendation 

In this section, we will firstly describe our motivation behind the proposed method. Then we will show how to measure

the relevance of (user, query, item) triple after graphically revisiting the relationship of (user, query, item) . 

4.1. Motivation 

In real applications, we often suffer from the problem of asymmetric information , that is to say, characteristics of a ma-

jority of items can not be fully expressed due to the lack of specific description. By contrast, massive amount of popular

items are represented as adequate descriptive terms. In this circumstance, the retrieval systems would unfairly evaluate the

ranks of those items with sparse information since current description can not cover the characteristics of them. In order

to cope with this problem, many web applications, such as delicious, 3 douban, 4 integrate collaborative tagging function [14] ,

which offers privileges for users to add free-style tags to the shared content, e.g. books, movies, videos. To a certain extent,

collaborative tagging enriches the content of items with descriptive terms for future filtering or search. However, there are

still a huge amount of items with sparse information because of the lack of motivated users to share their tags. Therefore,

the dataset that we have involved mainly contains items either represented as adequate tags, or oppositely with few ones. 

To promote the performance of retrieval systems, we assume that the characteristics of those items with sparse infor-

mation, denoted as sparse items , can be derived from their neighbors with abundant descriptive terms. Typically, one can

firstly employ efficient tag recommendation approaches [9,14] to pre-target sparse items with most possible keywords or

tags. Then, retrieval systems could return a ranked list of items by computing the scores for all items with respect to a

given user–query pair. However, the pre-targeting process could cost lots of computation resources. This significant chal-

lenge impulses us to think “Can we invent some algorithms to naturally represent the ternary interaction of ( query, user,

item ) in collaborative retrieval task?”

To answer this question, we next graphically review the relationship of ( user, query, item ) and interpret how to model

the ternary relationship from both users’ and items’ perspectives. 

4.2. Revisit ternary relationship 

To formulate our ideal, we firstly represent the relationship of the (user, query, item) triple as a graph, simply shown in

Fig. 1 (a), where entities ( user, query, item ) are represented as vertices and red edges represent the observed relationship be-

tween a pair of entities. In order to intuitively describe the ternary relationship of ( user, query, item ), we decompose Fig. 1 (a)

into two parts showed in Fig. 1 (b) and Fig. 1 (c), respectively. In Fig. 1 (b), each positive observation (user, query, item ) ∈ X

can be represented as a route path query − user − item , 5 where users serve as the intermedia vertices responsible to

transform the “resource” between items and queries, and the bipartite graph in the right intuitively represents the users’

preferences over items. In terms of Fig. 1 (c), the relationship of each positive observation is represented as a route path

user − item − query, where differently items serve as the intermedia “resource” transformer between users and queries,

and the left bipartite graph represent the rating information of user–item pairs. In the following part, we will give insight

into the possible effects brought by the slight difference between Fig. 1 (b) and (c). 

It can be seen that Fig. 1 (b) illustrates an user-central behavior network, where the relationship of user–item pairs is

represented as a collaborative network in the right part, analogously, the left part depicts the collaborative interactions

of user–query pairs. In practical application, Fig. 1 (b) could be extremely sparse due to the tinily available querying or
2 The goal of context-aware CF is to produce personalized recommendations to a particular user by taking into account the contextual information, such 

as time, location, and so on. Therefore, the query could also be regarded as a context factor. 
3 https://delicious.com/. 
4 http://www.douban.com. 
5 Here we use “path” to distinguish the representation of ( user, query, item ) relationship from different perspectives. 

https://delicious.com/
http://www.douban.com
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Fig. 1. Graphical representation of the user × query × item relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rating information from users. In order to deal with such challenge caused by the lack of users’ historical behaviors, the

proposed approach for collaborative retrieval task should combine both collaborative networks in Fig. 1 (b). By doing this,

users’ preferences over unconnected queries or items could be induced from their neighbors that have similar querying bias,

or tend to rate a similar set of items. 

Turning to Fig. 1 (c), we can easily find that left part is shared with Fig. 1 (b), however it represents a collaborative network

from items’ perspective. Analogous to Fig. 1 (b), the right part of Fig. 1 (c) represents the collaborative network of item–query

pairs. Since content features of items might be the possible queries, the word “query” in Fig. 1 (c) generally indicate both

content features and the observed queries. With the problem of asymmetric information mentioned in Section 3.1 , massive

amount of items in Fig. 1 (c) actually have too limited content to represent intrinsic feature. To better measure the ternary

relationship of ( user, query, item ), this challenge should be taken into account when we attempt to design an innovative

algorithm for collaborative retrieval task. Going through basic idea of recommendation problem, we find that many benefits

of item-based methods have been fully discussed. However, it is still lack of attention on utilization of collaborative network

from item side to cope with sparsity problem for collaborative retrieval task. We propose that leveraging neighbors with

similar features to induce the target item’s unknown features might be the possible way to help us to better evaluate the

rank of sparse items with respect to a given user–query pair. However, the case in collaborative retrieval task is totally

different from traditional recommendation problem, which usually involves binary relationship between user–item pairs, 

rather than the ternary interactions among ( user, query, item ). As we mentioned in Section 3.1 , pre-targeting items could

cost a lot of computation in searching similar items. In this work, we prefer to combine both user–item and item–query

collaborative networks to better capture the latent relationship of user − item − query . We believe that it could further

tackle the sparsity problem caused by the lack of content features, meanwhile improve the effect of learning the ternary

relevance of user − item − query path. 

4.3. Our method 

As mentioned above, we consider items’ collaborative information based on the assumption that regarding items as the

media vertex could leverage the similar items [34] with rich descriptive terms to improve the performance of retrieval

systems on estimating the ranks of sparse items. In our model, the score of user − item − query path in Fig. 1 (c) can be

given by: 

g(q, a, u ) = S q A a V 

� 
u , (2) 

where A a ∈ R 

n ×n is the linear transformation matrix of item a . Consequently, we integrate the item-central triple relevance

into the Eq. (1) , then TIIREC can be modified as: 

f (q, u, a ) = S q U u T 
� 

a + V u T 
� 

a + S q A a V 

� 
u (3) 

where the first term intuitively captures the ternary interaction of ( query, user, item ) by using encoder matrix U u of each

user to indirectly combine both user–query and user–item collaborative networks into one model. The querying and rating

preferences of target users could be learned based on not only their own historical behaviors, but also their neighbors’. To

some extent, it could effectively deal with the sparsity problem caused by the lack of users’ historical information. Differ-

ently, the third term in Eq. (3) focuses on modeling items’ collaborative information to tackle the sparsity problem caused
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by the items’ content features. As we allocate an encoder matrix with dimension n × n to each user and item, one might ar-

gue that the complexity of TIIREC could be extremely huge. To give a response the concern, we define a global user-encoder

matrix U instead of modifying an encoder matrix U u to every single user. The reason behind this is that we think sparsity

problems raised from item-side could have more impacts on building a precise predictor than the user-side. By doing this,

we only need to maintain a U ∈ R 

n ×n for the user-side collaborative network, and the item encoders A ∈ R 

|T |×n ×n can en-

sure the power of TIIREC to capture the patterns hide in the (user, query, item) observations. Then the modified relevance

function f of TIIREC can be presented as: 

f (q, u, a ) = S q UT � a + V u T 
� 

a + S q A a V 

� 
u (4)

In addition, we could see that each user has connected to a group of queries and items. To some extent, a part of user’s

interest could be represented by the group of historical input queries, and the feature of the clicked items can also be

another intermediate to reveal partial characteristics of users. Based on the assumption, we further modify both items’ and

users’ low-dimensional vectors as follows: 

˜ V u = V u + 

1 √ |Q u | 
∑ 

q ∈Q u 
S q + 

1 √ |A u | 
∑ 

a ∈A u 
T a 

˜ T a = T a + 

1 √ | Q a | 
∑ 

q ∈Q a 
S q . 

(5)

where Q u and A u denote a set of queries and items that are ever input by user u , respectively. Q a denotes a set of observed

queries correlated to item a . With the modified feature vectors, the final relevance of function for TIIREC can be defined as

follows: 

f (q, u, a ) = S q U ̃

 T � a + 

˜ V u ̃  T � a + S q A a ̃  V 

� 
u (6)

In the next section we are going to describe a pairwise learning algorithm to induce our model from a ranking per-

spective. The experimental results in Section 4.4 show that TIIREC can better estimate the ranks of items with respect to a

given user–query pair after considering the item-based collaborative information. The possible reason might be that TIIREC

explicitly models item-based interactions. 

4.4. Pairwise learning approaches 

The unknown parameters of the scoring function should be efficiently learned under the assumption that the top- k

retrieved items should include as many profitable selections as possible for a particular user with respect to a given query.

To achieve this, the CR task can be generally formulated as generating a ranked list of items for a given ( u, q ) pair by

solving a pairwise ranking problem. A common approach is to regard each observation in a given training set X , including

m observations (q i , u i , a i ) i =1 , 2 , ... ,m 

∈ Q × U × A , as a positive retrieval event, otherwise as a negative example. Subsequently,

the selected learning algorithm should give the definition of pairwise violation cost, which would be produced if a negative

item is assigned with a larger score or within a “margin” from the positive item. 

In this section, we shall firstly detail the mechanism of WARP, originally used in the first piece of CR work [37] , then

introduce a generic learning algorithm proposed by Rendle et al. [28] , namely BPR. Finally, we will show how to adapt BPR

instead of WARP to effectively learn the relevance function of LCR and the proposed method, TIIREC. 

4.4.1. Weighted Approximate-Ranking Pairwise (WARP) 

The WARP loss can be defined as follows: 

err WARP = 

m ∑ 

i =1 

L (rank a i ( ̄f (q i , u i ))) , (7)

where f̄ (q i , u i ) is a vector, which contains predictions for all items for a fixed user–query pair. The a i th element of f̄ (q i , u i ) ,

denoted as f̄ a i (q i , u i ) , is the predicted relevance value of i th training example ( q i , u i , a i ). Correspondingly, rank a i ( ̄f (q i , u i ))

in Eq. (7) is a margin-based rank of item a i , defined as: 

rank a i ( ̄f (q i , u i )) = 

∑ 

b� = a i 
I [1 + f̄ b (q i , u i ) ≥ f̄ a i (q i , u i )] , (8)

where I [ ·] is the indicator function. In Eq. (7) , L is a weight function evaluating the loss of the current scoring function f : 

L (k ) = 

k ∑ 

i =1 

αi , with α1 ≥ α2 ≥ α3 ≥ · · · ≥ 0 . (9)

According to the suggestion of Weston et al. [37] , we choose αi = 1 /i as the weighting approach, which would assign large

weights to top positions with rapidly decaying weight for lower positions. Intuitively, optimizing the WARP loss means to



128 L. Yu et al. / Information Sciences 411 (2017) 122–135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rank each positive item a i in the training set to highest position. For example, given a random query–user pair denoted as

( q i , u i ), if the score of an uncollected item b is less than a margin of one from the score of a i , this pair will produce a cost. 

Subsequently, Eq. (7) could be optimized by gradient descent based algorithms. However, in each updating step, it is

expensive to compute the exact value of rank a i for each observation when the number of items is very large. Thus, the exact

rank of Eq. (8) can be estimated by a random sampling process at each step [37] . That is to say, for a given observed sample

( q i , u i , a i ), one uniformly draws at random items from A until finding a violated item b , which satisfies 1 + f (q i , u i , b) >

f (q i , u i , a i ) , and then the rank of a i can be approximated as 

rank a i ( ̄f (q i , u i )) ≈ � |A| − 1 

K 

	 , (10) 

where �·	 is the floor function and K is the number of steps needed to find a item b . Then Eq. (7) can be modified as 

err WARP = 

m ∑ 

i =1 

L i 

L i = L (rank a i ( ̄f (q i , u i ))) · | 1 − f (q i , u i , a i ) + f (q i , u i , b) | . 
(11) 

Finally, Eq. (11) could be optimized by stochastic gradient descent (SGD). We constrain the parameters using || S i || ≤ C ,

i ∈ { 1 , . . . , |Q|} , || V i || ≤ C , i ∈ { 1 , . . . , |U|} , || T i || ≤ C , i ∈ { 1 , . . . , |A|} and project the parameters back into the constraints at

each SGD step. 

4.4.2. Bayesian Personalized Ranking (BPR) 

To clearly describe BPR algorithm [28] , we leverage a notation D X to denote the pairwise ranking constraints. 

D X = { (u, q, a, b) : (u, q, a ) ∈ X ∧ (u, q, b) �∈ X } 
Next, we present a generic approach to solve the personalized ranking problem for CR tasks by maximizing the following

posterior probability of the parameter space �. 

p(�| > u,q ) ∝ p(> u,q | �) p(�) , (12) 

where p ( �) denotes the prior probability of �, and notation > u,q = { a > u,q b : (u, q, a ) ∈ X , (u, q, b) �∈ X } denotes the pairwise

ranking structure for a given ( u, q ) pair. We assume that each element of > u, q is independently drawn from the same

probability. Hence, the above likelihood function p ( > u, q | �) can be rewritten as: 

p(> u,q | �) = 

∏ 

(u,q,a,b) ∈ D X 
p(a > u,q b| �) , (13) 

where p ( a > u,q b | �) denotes the probability that a user really prefers item a to item b for a given query, defined as [28] : 

p(a > u,q b| �) = σ ( ̂  x u,q,a,b (�)) 

σ (x ) = 

1 

1 + e −x 
. 

(14) 

Here we choose ˆ x u,q,a,b (�) = ˆ x u,q,a − ˆ x u,q,b , in fact ˆ x u,q,a,b (�) could be a arbitrary real-valued function depending on the

parameters �. For p ( �), we define it as a normal distribution with zero mean and covariance matrix 
∑ 

� = λ�I, that is,

� � N ( 0 , 
∑ 

�) . Now we can infer the BPR- Opt by filling p ( �) into the maximum posterior probability in Eq. (12) . 

BP R - Opt = ln p(�| > u,q ) 

= ln 

∏ 

(u,q,a,b) ∈ D X 
p(a > u,q b| �) p(�) 

= ln 

∏ 

(u,q,a,b) ∈ D X 
σ ( ̂  x u,q,a,b (�)) p(�) 

= 

∑ 

(u,q,a,b) ∈ D X 
ln σ ( ̂  x u,q,a,b ) + ln p(�) 

= 

∑ 

(u,q,a,b) ∈ D X 
ln σ ( ̂  x u,q,a,b ) − λ�|| �|| 2 , 

where λ� are model regularization parameters. 

Typically, gradient ascent based algorithm is an apparent optimization strategy for maximizing the posterior probability

in Eq. (12) . However, standard gradient ascent is not suitable for BPR- Opt because we have to compute ˆ x u,q,a,b for all negative

items b with respect to a given training sample (u, q, a ) ∈ X . If we have a large amount of items, it will be inefficient to

update the parameters in each gradient ascent step. To effectively learn the parameters, a stochastic gradient-ascent (SGA)

based algorithm, namely LearnBPR , was proposed by Rendle et al. [28] for optimizing BPR- Opt . Instead of comparing with

all negative items, LearnBPR only draws at random a negative item b in each SGA step, which makes BPR superior to WARP

in terms of the computation complexity (see next section). The procedure of BPR is presented in Algorithm 1 . 
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Algorithm 1 Optimizing models for BPR with LearnBPR . 

Input: X : Training Set 

Output: Learned 

ˆ �

1: initialize �

2: repeat 

3: randomly draw (u,q,a) from X 

4: randomly draw (u,q,b) from (u × q × A ) \ X 

5: ˆ x u,q,a,b ← ˆ x u,q,a − ˆ x u,q,b 

6: � ← � + α((1 − σ ( ̂  x u,q,a,b )) 
∂ 

∂�
ˆ x u,q,a,b − λ��) 

7: until convergence. 

Fig. 2. (a) Accumulated runtime required by WARP and BPR for searching violated items in each training iteration. (b) Comparisons of WARP and BPR on 

recall@30. Four groups of (Learning rate α, constraint C ) setups are randomly selected for WARP. One group of (Learning rate α, regularization λ) setup 

chosen for BPR mimics the best performance of WARP. The performance of each learning algorithm is validated on the same testing dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Learning LCR and TIIREC with BPR 

In above sections, we intuitively review two optional learning algorithms. In this section, we will present the comparative

results to study the efficiency of both learning algorithms. 

In terms of WARP, the random sampling procedure dominates the runtime according to several recent works [13,36] .

Weston et al. [36] indicated that each SGD step requires less than 1 + min ( |A|−1 
rank a ( f (u,q )) 

) sampling times to find a violated

item b on average. However, the computations of scores on items b could increase sharply or even worse for a massive item

database, if the positive item a happens to rank at the top of the list. Interestingly, such occasional situation seems to happen

frequently according to Hsiao et al. [13] . Comparatively, BPR only samples one time at each parameter updating step. To

demonstrate the efficiency of BPR for optimizing the LCR model, we conduct several experiments with the same evaluation

metric Recall@30 on the dataset Last.fm described in Section 4.1 . To avoid the fluctuations coming from parameters randomly

initialization on the results, each experiment for Fig. 2 (b) runs ten independent times. Experimental results show that BPR

needs less runtime to learn the parameters of LCR than WARP (see Fig. 2 (a)) without decreasing the performance of LCR on

the evaluation metric (see Fig. 2 (b)). In Fig. 2 (a), the iteration runtime curves of BPR are difficult to be distinguished from

each other, thus runtime curves of ten training iterations are crowded together. 

In summary, we propose to employ BPR instead of WARP to optimize LCR model. The complete BPR learning procedure

for LCR can be found in Algorithm 2 , where the function of 5–12th steps is to update corresponding parameters based on

the 5–6th steps in Algorithm 1 . 

As Eq. (6) shows, the model parameters of TIIREC include: 

T ∈ R 

|A|×n , V ∈ R 

|V|×n , S ∈ R 

|Q|×n 

A ∈ R 

|A|×n ×n , U ∈ R 

n ×n 
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Algorithm 2 Optimizing LCR with BPR. 

Input: X : Training Set 

Output: S, U, V, T 

1: Initialize S, U, V, T from uniform probability U(x, y ) 

2: repeat 

3: for (u,q,a) in X do 

4: randomly draw (u,q,b) from (u × q × A ) \ X 

5: ˆ x u,q,a,b ← f (u, q, a ) − f (u, q, b) with Eq. (1) 

6: Updating S q , U u , V u , T a , T b 
7: loss ← 1 − σ ( ̂  x u,q,a,b ) 

8: S q ← S q + α(loss · U u (T a − T b ) 
� − λS q ) 

9: V u ← V u + α(loss · (T a − T b ) − λV u ) 

10: T a ← T a + α(loss · (S q U u + V u ) − λT a ) 

11: T b ← T b − α(loss · (S q U u + V u ) + λT b ) 

12: U u ← U u + α(loss · S � q (T a − T b ) − λU u ) 

13: end for 

14: until validation performance does not improve. 

 

 

 

 

 

 

 

 

 

For a given training dataset, the values of parameters in TIIREC can be learned by following learning procedure of BPR.

As we can see, we need to calculate the gradients for each involved parameters under the BPR framework. The complete

learning procedure of TIIREC is described in Algorithm 3 , where the function of 5–14th steps is to update corresponding

Algorithm 3 Optimizing TIIREC with BPR. 

Input: X : Training Set 

Output: S, V, U, T , A 

1: Initialize S, V, U, T , A from uniform probability U(x, y ) 

2: repeat 

3: for (u, q, a ) in X do 

4: randomly draw (u,q,b) from (u × q × A ) \ X 

5: ˆ x u,q,a,b ← f (u, q, a ) − f (u, q, b) with Eq. (6) 

6: Updating S q , V u , T a , T b , U u , A a , A b 

7: S q ← S q + α((1 − σ ( ̂  x u,q,a,b )) · (U( ̃  T a − ˜ T b ) 
� + (A a − A b ) ̃  V � u ) − λS q ) 

8: V u ← V u + α((1 − σ ( ̂  x u,q,a,b )) · ( ̃  T a − ˜ T b + S q (A a − A b )) − λV u ) 

9: T a ← T a + α((1 − σ ( ̂  x u,q,a,b )) · (S q U + 

˜ V u ) − λT a ) 

10: T b ← T b − α((1 − σ ( ̂  x u,q,a,b )) · (S q U + 

˜ V u ) + λT b ) 

11: U ← U + α((1 − σ ( ̂  x u,q,a,b )) · S � q ( ̃  T a − ˜ T b ) − λU) 

12: A a ← A a + α((1 − σ ( ̂  x u,q,a,b )) · S � q 
˜ V u − λA a ) 

13: A b ← A b − α((1 − σ ( ̂  x u,q,a,b )) · S � q 
˜ V u + λA b ) 

14: end for 

15: until validation performance does not improve. 

parameters based on the 5–6th steps in Algorithm 1 . Complete implementation of TIIREC can be found at https://github.

com/jeppe/TIIREC . 

5. Experiments 

In this section, we present experimental results to demonstrate the efficiency of the proposed collaborative retrieval

model (TIIREC) on two real-world datasets, one of which is obtained from the Last.fm music website, the other one is from

Yelp Dataset Challenge 6 Round 3. 

5.1. Dataset and preprocessing 

To implement CR task, we need to preprocess the dataset. It is noted that the query analysis applications will transform

the provided queries as keywords or phrases which are the basic units to represent the items. Then retrieval system return

a ranked list of items based on the parsed queries. Thereby, a common approach is to regard a query × user × item triple as
6 http://www.yelp.com/dataset _ challenge. 

https://github.com/jeppe/TIIREC
http://www.yelp.com/dataset_challenge
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Table 2 

Basic statistics of Lastfm and Yelp dataset. 

lastfm-50tags Yelp 

#Users 1529 16,826 

#Item 8669 14,902 

#Query 50 587 

#Observed feedback 574,521 806,261 

#Density 8 . 67 × 10 −4 5 . 47 × 10 −6 

Table 3 

Parameters used for each method. 

Method last f m − 50 tags Yelp 

TIIREC α= 0.04, λ= 0.01 α= 0.08, λ= 0.01 

LCR α= 0.04, λ= 0.01 α= 0.1, λ= 0.01 

PITF α= 0.002, λ= 0.01 α= 0.02, λ= 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a keyword × user × item , where the keywords are equivalent to the set of filtered user tags, or content features. We carry out

data preprocessing to obtain two expectant datasets for the comparison experiments. 

Last.fm : This dataset was released in the framework of HetRec 2011, called hetrec2011 − last f m − 2 k ( last f m − 2 k ) [6] ,

and contains heterogeneous information, which mainly covers users’ collaborative tagging behaviors, listening preferences

on artists, as well as social relationship. 

In this paper, we focus on resources associated with collaborative retrieval tasks, that is, users’ listening and tagging

logs, which contain more than ten thousand unique tags utilized by 1892 users to reveal the characteristics of 17,632 lis-

tened artists. As we need to validate the ability of the proposed methods on retrieving sparse items, we then construct a

comparatively denser dataset from Lastfm. More specially, we keep only observations related to the top 50 most used tags,

generally correlated to the genres of music: for example, the top 5 tags are “rock”, “pop”, “alternative”, “electronic”, and

“indie”. 

If an artist a has ever been listened and assigned with several tags by a user u , for example, rock and indie , then we

allocate ( rock, u, a ) and ( indie, u, a ) to last f m − 50 tags . If the artist is not assigned with any tags by the user u , the genres,

assigned by other users to a , are distributed to the ( u, a ) pairs. If no user has ever assigned any genre to a , we choose to

drop corresponding ( u, a ) pairs in default, since such user–artist pairs are not perfect training examples for the CR task. In

the end, we infer the last f m − 50 tags (see Table 2 ) with 574,521 data points of the form ( u, q, a ) from the last. f m − 2 k

dataset. 

Yelp : In addition to last. f m − 2 k dataset, this research is also performed on a recent academic dataset, published under

the licence of Yelp Dataset Challenge Round 3, hereafter referred to as Yelp . This dataset contains 335,022 reviews and ratings

given by 70,746 users to 15,470 businesses located in the Phoenix and AZ metropolitan area. Each business is characterized

with rich content, for example, category like “Restaurants”, “Shopping”, “Health & Medical”, which makes us accessible to

have insight into users’ preferences over different businesses. We pre-filter this data to contain users with at least 4 reviews,

also corresponding businesses. After pre-filtering, we obtain a processed dataset including 806,261 well-formed points with

format (user, category, business), given by 16,826 users to 14,902 businesses, which totally are pre-tagged with 587 business

categories. For example, top-10 categories are “Restaurants”, “Shopping”, “Food”, “Beauty & Spas”, “Automotive”, “Mexican”,

“Health & Medical”, “Home Services”, “Nightlife”, “Fashion”. Each sample (user, category, business) indicates that a particular

user ever rated a business associated with the target category. 

5.2. Experimental setup 

In this paper, we conduct numerous experiments to evaluate the performances of each algorithm on the real Last.fm

and Yelp datasets. In terms of Last.fm dataset, we randomly draw 80% of samples in last. f m − 50 tags for training, 10%

for validation, and the rest for testing. Based on this dataset, we study the efficiency of WARP and BPR on optimizing

LCR model (see Section 3.4). The performance is evaluated on the testing dataset. Analogously, we randomly draw 60%

of samples in Yelp for training, 20% for validation, and the rest for testing. The initial values of feature matrices of both

models are randomly drawn from a uniform distribution U(−0 . 02 , 0 . 02) . The hyperparameters α and λ are chosen for each

algorithm using the validation set respectively. Different experiment settings are used based on the dataset and algorithms

(see Table 3 ). 

Our experiments are conducted to address the following issues: 

1. How does our proposed method compare with relevant personalized ranking approaches? 
2. Can the proposed algorithm improve the performance on evaluating the ranks of those items with few content features? 
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Table 4 

Different algorithms’ Recall vs. different k . The integer numbers of PITF and NMF represent the dimension 

n , and n is set as 10 for TIIREC and LCR algorithms. 

Dataset Method Recall@5 Recall@10 Recall@15 Recall@20 Recall@25 Recall@30 

Last.fm NMF-30 0.0495 0.078 0.103 0.126 0.144 0.164 

PITF-10 0.073 0.12 0.163 0.195 0.223 0.255 

PITF-100 0.0878 0.137 0.175 0.217 0.242 0.275 

LCR 0.091 0.159 0.23 0.298 0.343 0.378 

TIIREC 0.1 0.174 0.259 0.315 0.374 0.392 

Yelp NMF-30 0.0133 0.0226 0.0248 0.0276 0.0356 0.0435 

LCR 0.031 0.042 0.0698 0.089 0.122 0.154 

PITF-10 0.033 0.073 0.104 0.186 0.216 0.246 

PITF-100 0.096 0.155 0.204 0.237 0.259 0.305 

TIIREC 0.148 0.21 0.274 0.287 0.356 0.416 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison methods: To demonstrate the efficiency of our proposed approach, we mainly compare TIIREC with the state-

of-the-art collaborative retrieval algorithm, that is, LCR model as well as algorithms for tensor environmental and traditional

collaborative filtering. Besides LCR, the following baseline algorithms are used in this paper: 

• Pairwise interaction tensor factorization (PITF) [29] : As the state-of-the-art tensor algorithm for personalized tag recom- 

mendation, PITF is a personalized and context-aware algorithm aiming to return a top- k ranked list of tags when given

a particular user–item pair. In PITF, the interaction between each entity pair is expressed as the dot-product of specific

feature vectors. The ternary relationship user × item × tag is modified by the following score function: 

ˆ x (u, t, i ) = 

ˆ u 

T 
u ̂

 t U t + 

ˆ u 

I 
u ̂

 i U i + ̂

 t I t ̂  i 
T 
i , (15) 

where the first term ˆ u T u ̂  t U t denotes the relevance value of the given user u and tag t , middle term ˆ u I u ̂ i 
U 
i 

denotes the

relevance value of the given user u and item i , and the last term 

ˆ t I t 
ˆ i T 
i 

denotes the interaction between the given item

i and tag t . According to Rendle and Schmidt-Thieme [29] , the user–item interaction term vanishes when LearnBPR is

employed to optimize top- k ranking task. Thus, the final score function for tag recommendation task is: 

ˆ x (u, t, i ) = 

ˆ u u ̂  t U t + ̂

 i i ̂  t I t . (16) 

Analogously, collaborative retrieval task involves with returning a top- k ranked list of items with respect to a given user–

query pair, which inspires us to adapt it to CR tasks by lightly modifying Eq. (15) . Likewise, the user–query interaction

term vanishes, then the modified score function is denoted as: 

ˆ x (u, q, i ) = 

ˆ u u ̂
 i U i + 

ˆ q q ̂ i 
Q 
i 
. (17) 

where the first term ˆ u u ̂ i 
U 
i 

denotes the interaction between user u and item i , and the last term denotes the interaction

between query q and item i . The values of parameters can be leaned by employing BPR algorithm [29] . 
• Non-negative Matrix Factorization (NMF) [20] : This approach is not directly applied to model ternary relationship. In this

paper, we perform NMF on the item-query matrix to compute a top- k ranked preference items for given q and u . The

NMF implementation we used in this paper is from http://www.csie.ntu.edu.tw/ ∼cjlin/nmf/ . 
• LCR [37] : This method is the first piece of work for CR task. The authors try to measure the triple relevance of ( query,

user, item ) via the integration of user-central collaborative network. 

Evaluation metric : According to Ref. [37] , the performance of each algorithm is measured by recall@ k , a widely used

metric to evaluate the recommendation accuracy in top- k . For a given testing example ( q, u, a ), we first compute f ( q, u, i )

for each item i ∈ A , and then sort them in descending order of score. Then recall@ k equals to 1 if item a appears in the

top- k list, and equals to 0 otherwise. We report mean recall@ k over the whole test dataset. 

Recal l @ K = 

∑ 

u,q ∈U×Q # of recal l ed items 

| N| (18) 

5.3. Performance evaluation 

The comparison experiments are conducted on two dataset with different density scale. Table 2 summarizes the basic

information of the observed datasets. It is noted that the last f m − 50 tags is approximately over 158 times denser than Yelp

dataset, which offers available stuff to distinguish the performance of our proposed model from other baseline algorithms

in dealing with sparsity problem. We mainly consider the performance of algorithms on different settings of the values of k

and feature dimension n . In addition, we also validate the effectiveness and efficiency of LCR and TIIREC on evaluating the

ranks of sparse items in top- k list. 

Validation results : Table 4 presents the comparison results of all approaches on both Last.fm and Yelp datasets with

different length of recommendation list. Here we fix the number of latent factors of LCR and TIIREC to 10. From the results,

http://www.csie.ntu.edu.tw/~cjlin/nmf/
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Table 5 

Recall@30 vs. the dimension parameter n . 

Dataset Method n = 10 n = 50 n = 100 n = 200 

Last.fm LCR 0.378 0.49 0.502 0.518 

TIIREC 0.392 0.505 0.525 0.532 

Yelp LCR 0.154 0.334 0.419 0.459 

TIIREC 0.416 0.497 0.534 0.571 

Fig. 3. Probability distribution of training dataset according to the number of keywords that an item contains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we can see that the correctly predicted items of all algorithms increase as the growth of k . Comparing with other baseline

algorithms, TIIREC performs best in retrieving items with given queries by users. One possible reason might be that TIIREC

explicitly models user- and item-central collaborative network, which makes TIIREC sufficiently estimate the relevance of

( user, query, item ). Although LCR models the ternary relationship of ( user, query, item ), we argue that it fails to leverage

the item-based tripartite (see Fig. 1 (c)) to effectively measure users’ preference over items with given queries. In terms of

Last.fm dataset, TIIREC increases at least 3.7% when k = 30 in comparison with LCR, whilst improves over 12% in the best

case when k equals to 15. Especially in Yelp dataset which has more sparse items, the performance of LCR significantly

decreases with different settings. As for PITF, it proposes to explicitly use pairwise interactions to represent the ternary

relationship. However, interaction between a user and a query is insufficiently learned due to the vanishment of user–

query term under the BPR learning framework. NMF performs worst on both datasets, which indicates that only modeling

item–query bipartite network is not enough to deal with the CR task, that is, how to effectively measure the relevance of

a triple ( user, query, item ). Table 5 shows that the performance of both TIIREC and LCR improves along with the increase

of dimension n . Comparing with Last.fm, the performance gap between TIIREC and LCR is quite evident in Yelp dataset. It

indirectly offers some evidences that the integration of item-based information might be useful when the dataset includes

massive amount of sparse items. 

Sparse items ranking performance. In Section 3 , we argue that the asymmetric information problem can have items with

less keywords ranked unfairly due to the lack of content to express their characteristics. In this partition, we perform ex-

periments to investigate whether the proposed method can improve the ranking performance for sparse items with few

observable content features in the datasets. Fig. 3 shows the probability distribution of selecting an item according to the

number of keywords. According to Fig. 3 , we can see that different datasets exhibit different distribution. In Last.fm dataset,

although some items have more than 10 keywords, over 80% of items have fewer than 5 keywords. Therefore, we mod-

ify those items with less than 5 keywords as sparse items for Last.fm dataset. In Yelp dataset, items with two keywords

is quite large, almost takes up 50%, and over 80% of items have fewer than 4 keywords. In this case, we denote items

with less than 4 keywords as the sparse items for Yelp dataset. It’s noted that only 10% of testing cases are sparse items

in Last.fm, in contrast with over 70% of testing cases are sparse items in Yelp. Table 6 shows the validation results of

all algorithms on recalling sparse items in top- k recommendation list. We can see that our proposed method significantly

outperforms other methods on both datasets. Moreover, when comparing the performance in Yelp, the improvement of TI-

IREC indicates that integration of item-based collaborative information is more suitable for sparse collaborative retrieval

task. 
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Table 6 

Sparse items ranking performance at Recall@K. 

Dataset Method Recall @20 Recall @30 

Last.fm NMF 0.0 0 018 0.00378 

PITF-10 0.0 0 059 0.00129 

PITF-100 0.0 0 018 0.0 0 036 

LCR 0.0093 0.0293 

TIIREC 0.0191 0.0477 

Yelp NMF 0.0279 0.0365 

LCR 0.08 0.147 

PITF-10 0.171 0.221 

PITF-100 0.207 0.276 

TIIREC 0.254 0.372 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions and future works 

We aim to design an effective collaborative retrieval algorithm to objectively predict the ranks of those items with lack

of descriptive terms to reveal their own basic characteristics. To achieve this goal, we focus on the profits of leveraging

the collaborative information of items to better evaluate the ranks of those sparse items, and propose to express the latent

sophisticated relationships for CR task from not only users’ perspective, but also items’ perspective. Then, we propose a

superior latent collaborative retrieval model, TIIREC, by integrating the possible item-based information into LCR model.

Finally, we study the primary principles of LCR, of which we find that the runtime of LCR is dominated by the chosen

learning approach, namely WARP. Therefore, we propose to employ a generic approach, namely BPR, instead of WARP to

optimize the LCR model on the basis of further experimental analysis covering the topics of training efficiency and accuracy.

The proposed model can be easily generalized to deal with many other tasks involving to model ternary interaction

among entities such as collaborative image annotation, personalized search. Most typical example might be the tagging rec-

ommendation system, which aims to recommend tags to users with respect to items. As the emergence of knowledge graph,

entity relationship is represented as a triplet which is ideally matching the proposed model. In future, we could explore

the possibility of representing entity and relations from tensor perspective. However, we just explore possible interactions

among ( user, query, item ) triple. In practice, relationships of a pair of entities always involve with massive ingredients, which

could be termed as a currently-prevalent word, heterogeneous relationships. Due to this significant characteristics, we will

attempt to make our proposed model adaptive to learn the multi-relation by exploring diverse aspects of a sophisticated

system in future work. 
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