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Abstract – The heterogeneous nature of human behaviors contributes to the complexity of
human-activated systems. Empirical observations and theoretical models reveal the temporal
and spatial heterogeneity of many aspects of human behaviors, including social connections and
geographic movements, while little is known whether and how human individual’s behavioral
diversities are correlated across different aspects. With statistical analysis on large-scale data
of aligned online and offline human behaviors, we show that behavior spaces are coupled, inde-
pendent from the specific choice of measurements. The coupling further expands to individual’s
direct and indirect social contacts. This finding provides insight into understanding homophily
in different social systems and further improving the predictability of human online and offline
behaviors.

Copyright c© EPLA, 2018

Introduction. – Human behaviors are naturally het-
erogeneous in terms of temporal intervals [1], spatial mo-
bility [2] and social connections [3]. Understanding such
diverse behaviors is crucial to model and predict organiza-
tional and dynamical characteristics of large-scale human-
activated systems. Empirical observations have revealed
the burstiness, heavy tails, regularity, periodicity and pre-
dictability of human behaviors [1,4–6], and a collection of
theoretical models [1,2,7,8] has been proposed to explain
the mechanisms underlying these features, with further
applications to simulate and predict human behaviors in
a wide range of scenarios [9–16].

Diversity is a ubiquitous phenomenon in human social
systems [17–21] and manifested in many aspects of hu-
man mobility. People with different backgrounds and de-
mographics show far different mobility patterns [22,23].
The heavy-tailed distributions of displacement distance
and radius of gyration suggest the diversity of travel-
ling patterns [2,4]. Various motif structures of mobility
patterns reveal the diversity of travel sequences in daily
movements [24]. People also show various motivations or

preferences of behavior, such as exploring new locations
or returning to visited locations when choosing a destina-
tion [8,25]. Researchers have been trying to find universal
laws of diversities [2,4,26] and the correlation between mo-
bility diversity and economic phenomenon [27,28], while
for now it remains challenging to analyze, predict and sim-
ulate human behaviors due to the nature of high diversity
of such behaviors, especially at the individual level.

To overcome this difficulty, scientists have tried to make
use of associated behaviors and social relationships to an-
alyze mobility behavior. In the past, there were not ade-
quate data to bridge the studies on human mobility and
social relationships. Fortunately, the recent availability
of fusion data combining online social network structure
and offline spatio-temporal mobility trajectories provides
the opportunity to investigate how human mobility is as-
sociated by social relations. Such data include Call De-
tail Records [29] and Location Based Social Networks [30],
such as Twitter [31], Gowalla [32] and Jiepang [33]. Previ-
ous studies have revealed that human mobility is strongly
influenced by social relationships [34–36]. Therefore, the
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use of social relationships can significantly improve the
accuracy of location prediction [32]. Besides, the mobility
similarity between individuals is correlated with social
proximity, revealing the coupling relations between human
behaviors in online and offline spaces [37]. However, there
is still not sufficient knowledge about the correlation of
diversity of human behaviors in different spaces. Is the di-
versity of individuals’ online and offline behavior related?
Do those who have a variety of friends on social network
also visit various places? Is the diversity similar or differ-
ent between friends?

This study aims to answer these questions by investi-
gating Location Based Social Networks data. When peo-
ple use such services, they check in at locations in the
physical space through mobile devices and share their ex-
perience with online friends. Utilizing their check-in tra-
jectories and friendship information, this paper focuses
on the correlation between diversity of individuals’ on-
line social connections and offline spatial mobility, as well
as its relationship with topological distance. The results
show that the diversity of individual social connection and
spatial mobility is positively correlated. The diversity
of behavior is also positively correlated between indirect
friends, with correlation strength decaying with topologi-
cal distance.

Diversity. – Diversity measures how an individual’s
behaviors, categorized into labels, differ from each other.
For example, a person having lunch at the same bistro
every day shows a low diversity, while a person with a high
diversity never repeats [38]. In the scope of this study,
we consider two types of behaviors: friending and visit,
in online and offline spaces, respectively. In each space,
we measure diversity of an individual’s behaviors in two
aspects, namely variety and balance, borrowed from the
semantic interpretation of diversity [39] among a couple
of definitions.

Variety measures the number of labels (i.e., different
behaviors) of an individual, for example, the total number
of unique restaurants a person has ever visited, which is
obviously a non-negative integer. Specifically, we measure
an individual’s online variety as ki, the number of friends
in online space, and offline variety as li, the number of
locations visited in offline space.

Balance measures the uniformity of an individual’s be-
haviors, for example, whether she/he regularly rotates
among a couple of restaurants, or prefers a certain restau-
rant in most cases. Technically, we consider that the
behaviors of every individual follow a probability distri-
bution over online degree space or offline frequency space.
If an individual has friends with various degrees, or vis-
its different locations with similar frequencies, she/he is
the most diverse. Among various measurements of diver-
sity [40–42], we use Shannon entropy to formally describe
an individual’s balance diversity as follows:

Hi = −
∑

k∈{kj ,j∈N(i)}

p(k) log (p(k)) , (1)

which sums over all unique values of degree kj among the
individual’s friends N(i), and p(k) is the non-zero fraction
of the individual’s friends with degree k.

Considering the large space of possible values kj could
take (usually varying from several to hundreds), it is
less likely that two friends collide with the same degree,
and, therefore, any possible value of friend degree gets
an even probability, making balance diversity a trivial in-
verse of variety diversity. For example, say both users
A and B have 5 friends, whose degrees are [6, 7, 8, 9, 10]
and [1, 10, 20, 30, 40], respectively. Equation (1) gives
HA = HB = 2.322, while user A is believed intuitively
to be less diverse because his friends have similar degrees.
To avoid the loss of such information, we coarse-grain kj

into larger bins to merge friends with similar degree: We
replace kj with k̃j = "kj/5#, and rewrite eq. (1) as a 5-
binning version [43]:

H̃i = −
∑

k̃∈{k̃j ,j∈N(i)}

p(k̃) log
(
p(k̃)

)
, (2)

which sums over all unique values of coarse-grained degree
k̃j among an individual’s friends. In the above example,
users A and B have friends with coarse-grained degrees
[1, 1, 1, 1, 2] and [1, 2, 4, 6, 8], respectively, leading to H̃A =
0.722 and H̃B = 2.322, capturing the intuition that A’s
friends are more similar.

Applying eq. (2) in the online and offline spaces gives
our final definitions of topological diversity (TD) and spa-
tial diversity (SD), i.e., the Shannon entropy within friend
degrees and location frequencies, respectively,

TDi =
H̃i

log(ki)
= −

∑
k̃∈{k̃j ,j∈N(i)} p(k̃) log

(
p(k̃)

)

log(ki)
, (3)

SDi = −

∑
d∈D(i) p(ni,d) log(p(ni,d))

log(li)
, (4)

where ni,d represents the times users i visits location d,

and p(ni,d) = ni,d/
∑li

d=1 ni,d measures the fraction of
times she/he visits location d among all her/his locations
D(i). Both TD and SD are normalized to break the au-
tocorrelation between variety and balance: an individual
with a larger number of friends will automatically have a
higher entropy [27]. After normalization, TD/SD of in-
dividuals with different size of N(i) and D(i) are fairly
comparable.

Both topological and spatial diversity are based on
Shannon entropy and range within [0, 1]. The diversity
equals 0 when all her/his friends share the same degree,
or all her/his visits go to a single destination. Similarly,
the diversity goes to 1 when all her/his friends have differ-
ent degrees even after binning, or her/his visits are evenly
distributed over locations.

The heterogeneous nature of the network struc-
ture brought by the power-law degree distribution (see
fig. 1(a)) produces an inherent autocorrelation between k
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and TD since the statistics of high-degree nodes will bring
bias to the observation of correlation [44]. Therefore, we
leverage the null model technique [45,46] to generate ref-
erence networks without bias. A network null model is
obtained by randomly rewiring the edges throughout the
whole original network, meanwhile it ensures the invari-
ance of the degree of each node. Starting from the original
network, we switch two randomly selected edges, namely,
unlink (A, B) and (C, D) and then link (A, C) and (B, D),
on the premise that (A, C) and (B, D) are not connected.
After repeating such operation 10 times the number of
edges in a real network, a null network is obtained with-
out changing the degree sequence of the original network.
A total of 50 equivalent null models are generated to re-
duce random errors. We calculate TD of every node on
each rewired network and then use Φ to represent the ra-
tio between the diversity value in real network and null
models as

Φ(TD) =
TDreal network

TDnull models
. (5)

Φ > 1 means that a user’s real diversity is higher than its
random expectation, and vice versa.

Data description. – The dataset used in this study
is collected from a worldwide Location Based Social Net-
works application, Gowalla. There are nearly 200000 users
contributing over 6 million check-in records. The dataset
contains the information of social relations and mobility
records of each user, including the latitude, longitude and
time of each check-in. More detailed descriptions can be
seen in [32] and the raw data can be downloaded from
SNAP website1.

As a pre-process, we clean the data by 1) merging two
check-in records if their interval time is less than 30 min-
utes, and two locations within a 500 m × 500 m area, to
remove duplicate check-ins, and 2) filtering out inactive
users with less than 10 friends or 5 check-in locations to
avoid unreliable statistics on incomplete observations. Af-
ter that, 26647 users are remaining with 2698029 check-in
records from February 2009 to October 2010, forming an
undirected network with 254823 edges. The details about
the sampling method for active users and the cleaned data
are available at the webpage given in footnote2.

Results. – Firstly, the probability distributions of the
diversity metrics defined above are illustrated in fig. 1.
The two variety metrics, shown in the upper panels (i.e.,
the number of friends and locations), follow power-law dis-
tributions, indicating that most users have only a small
number of friends and visit a small number of places, while
there are a few users who have many friends and have vis-
ited lots of places. The two balance metrics, shown in
the lower panel (i.e., the topological and spatial diversity)
obey right-skewed distributions with mean value deviating
from a standard normal distribution to the right. Such dis-

1https://snap.stanford.edu/data/loc-gowalla.html.
2http://www.pkbigdata.com/common/share/71.html.

Fig. 1: The probability distributions of diversity metrics. The
probabilities of number of friends (a) and number of locations
(b) follow power-law distributions with exponent −2.28 and
−2.22, respectively. The probabilities of topological diversity
(c) and spatial diversity (d) follow right-skewed distributions
with peak at 0.78 and 0.97, respectively.

tributions imply that most users have friends dissimilar in
degrees on social networks and most users unevenly visit
places in spatial mobility, namely a large variety of online
or offline behavior patterns. While a few users have rel-
atively simple social network structure and mobility pat-
tern. In a word, heterogeneity can be observed through
all diversity metrics.

Next, we observe how an individual’s multiple diversity
metrics correlate, referred to as self-correlation there-
inafter. We first inspect the correlation within a single
space, starting by analyzing the correlation between two
online diversity metrics, i.e., the number of friends k and
the topological diversity TD. In fig. 2(a), the horizontal
and vertical axes represent degree k and ratio Φ(TD),
respectively. A positive correlation between the number
of friends and topological diversity is observed after ruling
out the autorelation due to the degree of a node. That
is to say, popular individuals usually have diverse friends,
and vice versa. Moreover, we also find that topological di-
versity is greater than 1 when an individual has more than
40 friends, namely, the diversity of large-degree users is
higher than the randomized value while that of small-de-
gree individuals is lower than the randomized value. This
indicates that the large-degree individuals are more willing
to make various friends than small-degree individuals.

For offline diversity metrics, i.e., the number of loca-
tions l and spatial diversity SD, we also utilize the null
model technique to remove the bias brought by the in-
homogeneity of visiting patterns (see fig. 1(b)). Specifi-
cally, we randomly assign an individual’s total check-ins
to his/her visited locations, ensuring that each location
has been visited at least once and the total number of
visits remains unchanged. For example, the visiting pat-
tern of an individual with 100 check-ins at 5 locations, say
[20, 30, 15, 15, 20], may be shuffled to [37, 31, 14, 5, 13] or

48001-p3



Chao Fan et al.

Fig. 2: The self-correlation between diversity metrics in the
same space. (a) The correlation between the number of friends
k and topological diversity TD. The y-axis represents the ra-
tio of the diversity value between real and null networks. (b)
The correlation between the number of locations l and spatial
diversity SD. The y-axis represents the ratio of diversity value
between real and null trajectories.

[63, 10, 22, 1, 4]. Then SD is recalculated for each random-
ized sequence. 50 experiments are performed to reduce the
statistical errors. Similar to the previous analysis on TD,
two groups of results of the correlation between l and SD
are obtained, which are based on the real and randomized
mobility trajectories, respectively. We use Φ(SD), which
is similar to eq. (5) to represent the ratio between them
and show the results in fig. 2(b). The monotonically in-
creasing curve implies positive correlation between l and
SD. That is to say, actively moving individuals show more
diverging preference over locations. People who have vis-
ited more locations show more homogeneous visiting pat-
terns. Furthermore, most part of the curve is higher than
1, indicating that the diversity of real human mobility be-
havior is higher than the randomized case.

Considering that the number of friends and locations
monotonically increases with time, fig. 2 can be inter-
preted as the fact that both social and spatial diversities
grow over time. In other words, people’s behaviors become
more and more diverse. When people use a social network
service or live in a place for a long time, they tend to make
more diverse friends or visit more different places, which
brings a higher diversity.

Figure 3 reports the self-correlation between diversity
metrics in different spaces. Both panels illustrate clearly
a consistent positive correlation between online and offline

Fig. 3: The self-correlation between diversity metrics across
different spaces. (a) The correlation between the number of
friends k and number of locations l. (b) The correlation be-
tween the ratio of spatial diversity Φ(SD) and ratio of topo-
logical diversity Φ(TD).

diversity, although with different growing patterns. That
is to say, those users who have more friends in online space
tend to visit more places in offline space, and those who
have more diverse visiting patterns in spatial mobility tend
to have more diverse neighborhood structures on social
networks. Such a universal pattern indicates the in-depth
consistency of people’s online and offline behavior.

On the basis of understanding the self-correlation be-
tween different diversity metrics, we then inspect the cor-
relation of diversity metrics between neighbors, referred
to as social correlation. Since it is known from previous
analysis that the heterogeneous network structure will bias
the statistic, the user-friend pairs are sampled without
overlapping to avoid auto-coupling. Specifically, we use
the sampling without replacement method to pick out the
pairs to ensure that every individual appears in the sample
only once to avoid the influence from the hub nodes. In
the sampling process, once an edge is chosen, the two in-
dividuals connected by it as well as all the edges attached
to them are removed from the sample pool. Fifty parallel
experiments are performed to reduce the statistical errors
and only 63080 edges on average are sampled in each ex-
periment. We observe the correlation of a diversity metric
between neighbors, and then average it over 50 experi-
ments. The results are shown in fig. 4. The four curves all
show positive correlations, indicating an assortative mix-
ing pattern between individuals and their friends regard-
less of the diversity metrics. This tells that it is common to
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Fig. 4: The social correlation of diversity metrics including
the number of friends (a), number of locations (b), topological
diversity (c) and spatial diversity (d). The x-axis and y-axis
represent the diversity metrics of individuals and their direct
friends, respectively.

observe friends with similar behavior patterns, in terms of
making diverse friends or visiting different locations. This
similarity is consistent with the homophily phenomenon
observed in sociological studies [47–50].

Upon the positive social correlation between diversity
metrics, we extend the interest to a more generalized form:
How does an individual’s behavior correlate with his/her
friend’s friend, and even further? We measure the topolog-
ical distance between an individual and an indirect friend
with the length of the shortest path between them on a
social network, denoted as hop. We use the Pearson corre-
lation coefficient r to quantify the correlation between di-
versity metrics of two individuals with different topological
distance from 1 to 6. The logarithm form of diversity met-
rics is used to calculate Pearson’s r. As shown in fig. 5, the
average r for various diversity metrics consistently illus-
trate that direct neighbors have the strongest correlation,
and increased topological distance weakens the correla-
tion. When the distance reaches 3 hops, only the correla-
tion of topological diversity is greater than 0.1. When it
goes to 4 and beyond, all correlation coefficients converge
to 0. That is to say, the correlation of behavior between
individuals is persistent within 3 hops. This phenomenon
also confirms the “three degrees of influence” theory in
the realm of social network [51–53]. Furthermore, it is
noticeable that the points of online diversity (squares and
up-triangles) are significantly higher than those of offline
diversity (circles and down-triangles) when the topologi-
cal distance is 1. This means that the online connection
between friends is much higher than offline connection,
indicating that people are more likely to cluster on so-
cial networks while less synchronized when traveling in
real life.

Fig. 5: The relationship between Pearson coefficient and topo-
logical distance. Pearson’s r measure the correlation of diver-
sity metrics including the number of friends (squares), number
of locations (circles), topological diversity (up-triangles) and
spatial diversity (down-triangles) between pairs who are sev-
eral hops away.

Discussions. – The popularity of the mobile Internet
applications provides opportunities for the study on the
coupling of people’s online and offline behaviors. By ana-
lyzing data of Location Based Social Networks, this study
investigated the correlation between diversity of people’s
online social network and offline mobility pattern as well
as its spread on topology. The comprehensive experiments
demonstrate a universal positive and metric-independent
correlation between the diversity of human behaviors,
which exists not only between online and offline behavior
of an individual, but also between neighboring individu-
als. Specifically, people with many friends have a greater
chance to visit a large number of places, and those who
have diverse visiting pattern also have diverse online so-
cial network structure. The positive correlation between
connected individuals implies that the social network is as-
sortatively constructed. Such a positive correlation decays
with the topological distance between individuals, and will
disappear after 3 hops.

Our study provides a clear picture of the relationship be-
tween human behaviors in different spaces in the perspec-
tive of diversity. The coupling between behaviors could
reduce the complexity of the associated system, further re-
duce the dimension of features when analyzing online and
offline behaviors. Besides, if an offline co-occurrence net-
work, which is obtained by connecting those people who
appear in the same place at the same time, is coupled
with the online social network, the so-called multiplex net-
works [54] could be used to analyze the characters of some
dynamical processes, such as spreading [55]. Furthermore,
our methodology for analyzing correlation could also be
used for other researches on human behaviors. It should
be noted that both the normalization and null model
are designed to eliminate autocorrelation when analyz-
ing diversity measurements. Such autocorrelation in self-
correlation analysis (see figs. 2 and 3) can be eliminated
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by either method, but that in social correlation analysis
(see figs. 4 and 5) can only be eliminated by normalization.
Therefore, we keep both of the two methods.

Finally, diversity can be understood from the perspec-
tive of predictability as entropy is negatively associated
with predictability [6,15]. Specifically, a user’s high topo-
logical diversity means that the degrees of his friends are
widely distributed, so it is difficult to guess whether a
friend is of a high or a low degree. Similarly, a high spa-
tial diversity indicates that the user evenly visits various
locations, leading to the difficulty to guess the next lo-
cation she/he will visit. Thus, we hope that this study
could give insights into the predictability of human be-
haviors, especially the location prediction with the help of
social relations.
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