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Exploring the effect of social media and spatial
characteristics during the COVID-19 pandemic in

China
Xiu-Xiu Zhan, Kaiyue Zhang, Lun Ge, Junming Huang, Zinan Zhang, Lu Wei, Gui-Quan Sun, Chuang Liu and

Zi-Ke Zhang

Abstract—The declaration of COVID-19 as a pandemic has
largely amplified the spread of related information on social
medium, such as Twitter, Facebook and WeChat. Unlike the
previous studies which focused on how to detect the misinforma-
tion or fake news related to COVID-19, we investigate how the
disease and information co-evolve in the population. We focus on
COVID-19 and its information during the period when the disease
was widely spread in China, i.e., from January 25th to March
24th, 2020. We first explore how the disease and information
co-evolve via the spatial analysis of the two spreading processes.
We visualize the geo-location of both disease and information
at the province level and find that disease is more geo-localized
compared to information. We find high correlation between the
disease and information data, and also people care about the
spread only when it comes to their neighborhood. Regard to
the content of the information, we find that positive messages
are more negatively correlated with the disease compared to
negative and neutral messages. Additionally, we introduce ma-
chine learning algorithms, i.e., linear regression and random
forest, to further predict the number of infected using different
characteristics, such as disease spatial related and information-
related characteristics. We obtain that the disease spatial related
characteristics of nearby cities can help to improve the prediction
accuracy. Meanwhile, information-related characteristics can also
help to improve the prediction performance, but with a delay,
i.e., the improvement comes from using, for instance, the number
of messages 10 days ago, for disease prediction. The methodology
proposed in this paper may shed light on new clues of emerging
infections prediction.

Index Terms—COVID-19, social media, co-evolution, predic-
tion, spatial characteristics

I. INTRODUCTION

COVID-19 has become a world-wide pandemic since it
was first reported in the late 2019 in Wuhan, China. It

has coursed more than 90 million infected and 2 million deaths
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all over the world until January 2021. As a new contagious
disease, it is the first time that the internet and social media
are used as tools to inform the pandemic, share knowledge,
keep people connected at the quarantine time, etc. Until now,
the treatment of COVID-19 is rather limited since no vaccine
is approved to be effective. Thus, one may rely more on
the information s/he obtains online to guide her/him to take
actions, such as wear masks, wash hands and keep distance,
against the disease [1], [2], [3], [4], [5].

Disease information appears and co-evolves with the dis-
ease when a disease starts to spread in the population. The
development of internet has changed the way of information
transmission from offline to online, which largely accelerate
the transmission speed and also dramatically increase the
outbreak size of the information. For example, the maximum
daily number of individuals talking about H7N9 in 2013 on
the largest micro-blogging system in China, Sina Weibo, was
almost 90 million [6], [7], [8], [9]. For COVID-19, we have
collected 163.1 million messages (including 154.8 geotagged
messages) on Chinese online social platforms from January
25th, 2020 to March 24th, 2020, with 2.58 million messages
per day on average. Among the information spreads on the
social platforms, one may find reliable information that could
help to adopt norms or behaviors which can inhibit the disease.
However, there are also low-credibility or false information
that may be harmful to public’s health both physically and
mentally and also may cause panic in the population. The
information related to COVID-19 has been recognized as
infodemic by WHO, as it contains overabundance and ques-
tionable information [10]. The availability of the information
data online has motivated researchers to work on interesting
research problems [11], [12], [13], [14], [15], [16]. For exam-
ple, Gallotti et al. [17] have worked on 100 million Twitter
messages to investigate the risks of infodemics in different
countries. They proposed an infodemic risk index to capture
unreliable news across countries. Cinelli et al.[18] analyzed
the information diffusion data of COVID-19 on platforms
such as Twitter, Instagram, YouTube, Reddit and Grab. They
modeled the information diffusion with epidemic model on
different social platforms to obtain the basic reproduction
number. There are also papers working on how to detect the
misinformation and social bots related to COVID-19 [19], [20],
[21], [22], [23].

Despite the effort on the analysis and modeling of COVID-
19 and its information, the coupling effect between these
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two dynamical processes remains unknown. In this work, we
research the coupling dynamics between the spread of COVID-
19 and its information. We collect the information data from
Qingbo Bigdata (www.gsdata.cn) with specific key Chinese
words related to COVID-19. The data contains most of the
well-known social medium in China and is representative
regard to the public response to the disease. We analyze the
geo-location data of both disease and information, and explore
the correlation between these two evolutionary processes. We
find that the province-level disease and information data are
highly correlated. For the disease, the provinces that are
close to Hubei are more infected than the others. However,
people in the more developed provinces, such as Beijing,
Guangdong and Shanghai, tend to discuss about COVID-19
online more than the other provinces. This indicates that
disease is more spatially localized compared to information.
Based on the analysis of COVID-19 and its information data,
we further explore whether information can help to improve
the prediction of COVID-19 by machine learning models, i.e.,
linear regression and random forest [24].

The rest of the paper is organized as follows. In Section
II, we give detailed analysis of the information and disease
data at the province level. Based on the correlation analysis
in the above section of disease and its information, we further
use machine learning algorithms, i.e., linear regression and
random forest, to predict how many people will be infected in
the future in Section III. We note that we predict the number
of infected in each city. Additionally, we also analyze which
characteristics are more important for the disease prediction in
this section. We conclude the paper in Section IV. The detailed
descriptions of the algorithms and data are given in Section
V.

II. SPATIAL ANALYSIS OF COVID-19 AND ITS
INFORMATION

In Figure 1A and 1B, we visualize the total number of in-
fected and the total number of messages regarding to COVID-
19 in each province. The exact quantities of the two variables
are given in Table S1 in the Appendix. We find that the
infected cases of COVID-19 are mostly distributed in the
provinces that are geographically close to Hubei province.
The top 10 provinces with the most infected individuals are
Hubei, Guangdong, Henan, Zhejiang, Hunan, Anhui, Jiangxi,
Shandong, Jiangsu and Chongqing. The top 10 provinces with
the most number of messages are Beijing, Guangdong, Shang-
hai, Shandong, Zhejiang, Jiangsu, Sichuan, Henan, Hubei and
Fujian. Thus, 6 provinces, i.e., Hubei, Guangdong, Henan,
Zhejiang, Shandong, Jiangsu, are not only in the top 10 most
infected but also in the top 10 most informed. Hubei is the
original place where COVID-19 was first reported and is also
the place with 82.8% of infected individuals all over China.
However, it seems people from the most developed provinces,
such as Beijing, Guangdong and Shanghai are more likely to
talk about COVID-19 online compared to Hubei. It is validated
by the fact that the more developed provinces tend to have
more messages about COVID-19 in Figure S6A and S6B in
the Appendix. In the figure, we show the number of messages

is highly correlated with the GDP and GDP per capita in every
province, with the Pearson correlation coefficients equal to
0.77 (p = 3.8×10−7) and 0.71 (p = 8.9×10−6), respectively.
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Fig. 1: Visualization of (A) the total number of infected
cases and (B) the total number of messages in each province
of China. (C) We show the daily number of infected in
Hubei (purple bar), the daily number of infected in the other
provinces except Hubei (light red bar) and the cumulative
number of infected cases in China (black dash line). (D) We
show daily number of messages in Hubei (purple bar), daily
number of messages in the other provinces except Hubei (light
red bar), daily number of messages in Beijing and Guangdong
(blue bar) and the cumulative number of messages in China
(black dash line).
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Fig. 2: Daily number of infected (red curve) and messages
(blue curve) in each province. We show the top 4 provinces
(i.e., Hubei, Guangdong, Henan, Zhejiang) that have most
infected individuals. The daily number of infected (messages)
of the other provinces are given in Figure S4 in the Appendix.
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Fig. 3: (A) The number of times a province is mentioned in
all the messages. (B) The correlation between the number of
mentioned times and the number of infected at the province
level.

In Figure 1C (D), we further show the daily increase of
infected (messages) and cumulative number of infected (mes-
sages) globally in China. To be specific, the disease spreads
fast during January and February and becomes stable in March,
with the most cases from Hubei province (shown by the black
dash curve in Figure 1C). A significant spike in the number
of infected cases on 13th of February is because the health
officials essentially broadened the definition of what could be
counted as an infected case. However, the number of messages
continuously increases during the research period, with Beijing
and Guangdong dominating the diffusion of information. The
spreading pattern of COVID-19 and its information shows
that despite the coevolution of these two spreading processes,
the peak of COVID-19 information is much later than that
of COVID-19 in China. As a matter of fact, when a new
contagious disease starts to spread in the population, people
may not take it serious at the beginning as they lack knowledge
about the disease. However, when people are aware of the
high infection and fatality rate of the disease, they will pay
more attention and start to talk both online and offline. Thus,
information starts to break out in the population. The time lag
between the outbreak of disease and information has also been
found in [6], where we studied the disease and information
spreading for H7N9 and Dengue. Additionally, we further
confirmed the time lag between these two spreading processes
by giving the daily increase of disease and information in
Figure 2 at the province level. In Figure 2, we only show
the daily increase for the top 4 most infected provinces, the
daily increase for the other provinces are shown in Figure S4
in the Appendix. For most of the provinces, the number of
infected increased before 21st, February. The daily number of
messages shows similar increasing pattern in the provinces,

with the peak around 6th of March. If we take a look of the
messages’ content, we find that the content may mention the
names of the cities (or provinces). In Figure 3A, we show
the number of times a province is mentioned and find that
Hubei is the most mentioned province. The number of times
that Hubei is mentioned is much higher than the second most
mentioned province, i.e., Guangdong. We also visualize how
the top 5 most mentioned provinces are mentioned by the other
provinces in Figure S5 in the Appendix. We find that the top 5
most mentioned provinces are more mentioned by people from
provinces, such as Beijing and Guangdong. Furthermore, the
number of infected is highly correlated with the number of
times a province is mentioned, as shown in Figure 3B. The
Pearson correlation coefficient in the log-log scale between
them is as high as 0.90 (p = 4.4× 10−12).

In Figure 2 and S4 in the Appendix, the daily number of
messages in different provinces shows similar trend of peak.
However, the evolution of information and the total number of
messages are still different across provinces. Therefore, we are
motivated to explore what kind of factors are correlated with
the quantity of messages posted in every province. We show
how the number of messages in every province is correlated
with the following variables, i.e., province-wise population, the
distance from Hubei to the corresponding province, GDP, GDP
per capita, electricity consumption and highway transport vol-
ume in each province in Figure 4 (Figure S6 in the Appendix)
. For simplification, we denote the total number of messages in
every province as information volume. The distances between
Hubei and other provinces are computed according to their
capitals’ geographic location. We show the Pearson correla-
tion between the variables. But in different figures, we may
use linear or log scale of the variable for the correlation
calculation. Taking population as an example, we compute
the Pearson correlation coefficient (PCC) between the the
information volume list and population list of all the provinces
in the log-log scale. The result is shown in Figure 4A. The
PCC between the information volume and population size is
r = 0.57 (p = 7.7 × 10−4), indicating provinces with higher
population size tend to have larger volume of information.
The PCC between the information volume and the province
distance to Hubei is negative, which equals to r = −0.44
(p = 1.4×10−2). Actually, if we take a look of Figure 4D, the
number of infected in the province-wise level is also negatively
correlated with the province distance to Hubei. This means that
the less population will be infected if the province is further
away from Hubei. As people in the provinces which are further
away from Hubei feel less threatened by the disease, resulting
in a smaller information volume in the corresponding province.
That is to say, people care about the spread only when it
spatially comes to their neighborhood. We investigate the
correlation between the number of infected and information
volume in province-wise level in Figure 4C, which shows a
high correlation (r = 0.58, p = 6.3 × 10−4). Figure S7A-
D in the Appendix indicate the number of infected is also
highly correlated with economic characteristics such as GDP,
GDP per capita, electricity consumption and highway transport
volume. Since COVID-19 started to spread in the population,
the only effective way to decrease the infected number is
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lockdown. However, lockdown has affected the normal eco-
nomic activities [25]. The high correlation between COVID-
19 and the economic characteristics shown in Figure S7A-D
indicates that sustaining the economic activities and inhibiting
the disease spreading is more urgent in developed areas.
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Fig. 4: Correlation between the total number of messages in
each province and (A) population in each province; (B) the
distance from Hubei to each province. Correlation between
the total number of infected in each province and (C) the total
number of messages in each province; (D) the distance from
Hubei to each province.

III. CITY-WISE EPIDEMIC PREDICTION

Armed with the above analysis about the relation between
COVID-19 and its information, we explore whether the dif-
fusion of information about the disease can help to predict
the disease. For the disease and information, we have the
data of every single city. Therefore, we will focus on the
prediction of disease in the city level in this section. We use
linear regression (LR) and random forest (RF) algorithms as
prediction models. The details of these two algorithms are
given in Section Method and Data Description. The features
derived from the disease as well as its information are used
as features for prediction.

Let us formally present our method. We consider to predict
the number of infected in each day of 322 cities in China.
The duration of COVID-19 data we use in our prediction
model is from January 25th to March 9th, 2020. Thus we
use the first 34 days as the training data and the remaining 10
days as the test data. As a baseline model, we first introduce
how to use the historical disease data to predict the number
of infected. Then, we further add the historical data of the
disease information into the baseline model to explore whether
the features derived from disease information is helpful for
improving the prediction accuracy.

A. Evaluation Metric

We use mean absolute error (MAE) to evaluate the perfor-
mance of the prediction model. For instance, if the real number

of infected in each city at time t is given by {I1t , I2t , · · · , INt },
where N is the number of cities. Variable Ijt means the number
of infected of city j at time t. The predicted values are given
by {Î1t , Î2t , · · · , ˆINt }. Then MAE at time t is given as follows:

MAEt =
1

N

N∑
j=1

|Ijt −
ˆ
Ijt | (1)

If we consider the prediction of ten days, we can use the
average MAE values over the ten days, denoted as 〈MAE〉, to
evaluate the prediction performance. The small value of MAE
(or 〈MAE〉) means the predictive model is more accurate in
predicting the number of infected, and vice verse. We note
that we have 322 cities with nonzero infected cases. Thus in
the following analysis, we use N = 322.

B. Prediction based on disease historical data

The historical data of the disease is the number of infected
at each day for every city. The number of infected in city j at
day t is given by Ijt . For every city, we show how the current
number of infected is correlated with the historical number of
infected in that city by computing the auto-correlation between
the time series. We use τ to represent the time lag. For a given
city j, suppose the number of infected time series is given by
Ij = {Ij1 , I

j
2 , · · · , I

j
T }, the lag τ auto-correlation function rjτ

is defined as

rjτ =

T−τ∑
t=1

(Ijt − Īj)− (Ijt+τ − Īj)∑T
t=1(Ijt − Īj)2

, (2)

where Īj is the average number of infected in city j. The
average lag τ auto-correlation rτ for all the cities is defined
as

rτ =

322∑
j=1

rjτ (3)

We show how the average lag τ auto-correlation rτ is
changing with lag τ in Figure 5A, where τ ∈ [1, 20]. The auto-
correlation coefficient decays with the increase of τ , which
means the number of infected is more related to the recent
number of infected. When τ = 1, we achieve the highest
auto-correlation coefficient.

Prediction based on historical disease data of target city.
People in the same city normally may have more contacts with
each other, as they live, work and take the public transportation
in the same city. Thus the previously infected individuals may
continue to spread the disease in the same city. This motivates
us to explore only using the historical disease data of a target
city as features to predict the number of infected in the future.
Motivated by the fact that the number of infected is more
correlated with the recent number of infected (as shown in
Figure 5A), we choose to use the previous n (n ∈ [1, 7]) days
of infected as features to predict the number of infected at
day t. In other words, if we use Ijt as the label, the features
that are used for learning are {Ijt−n, I

j
t−n+1, · · · , I

j
t−1}. We

show the results of using n = 1, 2, · · · , 7 in Figure 6. Taking
n = 1 as an example, we use the number of infected at day
t − 1 as features and use the number of infected at day t
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as labels for every city. After training the model by using
the disease data of the first 34 days (from January 25th to
February 28th), we test the prediction performance on the
remaining 10 days (from February 28th to March 9th) for
every city. In Figure 6, we give the prediction performance of
linear regression and random Forest, respectively. In Figure 6A
and 6B, different curves indicate we use features from previous
n days as training data. The x axis indicates the dates that
we need to predict for the number of infected. The MAE is
relatively small for daily prediction except for March 2nd for
both of the learning models. Figure 6C shows the 〈MAE〉 of
the prediction over 10 days. If we take a look at Figure 6A
and 6C together, the smallest MAE and 〈MAE〉 of linear
regression are given by using historical disease data of n = 4.
The prediction performance of random forest is shown in
Figure 6B and 6C. The average MAE decreases with the
increase of n. When n > 1, random forest shows better
prediction performance than linear regression. Since linear
regression and random forest both perform well when n = 4,
we list the regression coefficients of the features for the two
algorithms in Figure S8 in the Appendix. The most relevant
feature is the number of infected in the previous step (It−1)
for both algorithms, which indicates the markovian property
of epidemic spreading on the population [6]. But the other
feature importance is quite different for the two algorithms.
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Fig. 6: Prediction based on using the target city’s historical
disease data as features. (A) Daily prediction performance
(MAE) for linear regression; (B) daily prediction performance
(MAE) for random forest; (C) 〈MAE〉 value when using
different lengths of historical data, the length is determined
by variable n. X-axis shows the number of days (n) we use
as features. For example, n = 1 means we choose to use the
previous one day’s features.

city and nearby cities. In Figure 4D, we showed that
the provinces that are spatially close to Hubei tend to
have more infected cases, which means the geographical
distance between provinces (or cities) may have impact
on the number of infected cases for a province (or city).
Thus, we include the historical data of nearby cities to
predict the number of infected in a target city, besides the
historical data of the target city. We use m to represent the
number of nearby cities to be included as features. In other
words, if we use Ijt as the label and choose m = 2, the
features that are used for learning are {Ijt−n, I

j
t−n+1, · · · ,

Ijt−1;N1(Ijt−n), N1(Ijt−n+1), · · · , N1(Ijt−1);N2(Ijt−n),

N2(Ijt−n+1), · · · , N2(Ijt−1)}. In the features, N1(∗) and
N2(∗) means features from the nearest city and the second
nearest city, respectively. Similarly, if m = 3, we use
N2(∗) and N3(∗) to represent features from second and
third nearest cities, respectively. We first fix n = 4 and
test how the number of nearby cities’ historical data will
influence the prediction performance. We choose m equals
to 0, 1, 2, 3, 4, 5, in which m = 0 means we only consider
the historical data of the target city as features. The MAE
and 〈MAE〉 for linear regression and random forest are
shown in Figure 7A-C. In Figure 7A and 7B, we show the
prediction performance (MAE) for everyday from February
29th to March 9th, 2020. In Figure 7A and 7C, we show that
the MAE and 〈MAE〉 for linear regression. With the increase
of m, the performance of linear regression first decreases
until m = 2. We obtain the lowest 〈MAE〉 when m = 2,
which means including the nearby cities’ infected number
can help to increase the prediction performance for linear
regression. We obtain similar results for random forest, as
shown in Figure 7B and 7C. For the m values we choose,
we obtain the smallest MAE and 〈MAE〉 when m = 5. In
all the m values we choose, random forest performs better
than linear regression. In the following study, we fix m = 5,
i.e., we include the features from the first 5 nearest cities in
our model. We test how many previous days (n) we need to
consider as features for prediction in Figure 7D-F. Figure 7D
and 7E show the daily prediction for linear regression and
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random forest, respectively. In Figure 7F, we compare the
〈MAE〉 for m = 0 and m = 5 with the change of n. When
m = 5, linear regression works better for small value of
n, with the optimal 〈MAE〉 achieved when n = 1. When
n = 1 and 2 for linear regression model, adding features from
nearby cities helps to predict the number of infected, which
are shown by the different between the curve of m = 0 and
m = 5 in Figure 7F. Random forest also works better when
adding features from nearby cities for n = 1, 4, 5, 6, 7, as
shown in Figure 7F. Additionally, random forest performs
relatively better than linear regression for most n values.
Overall speaking, the optimal prediction is given by random
forest when m = 5, n = 4. In a word, we show from data
(Figure 4D) and model (Figure 7) that if we want to predict
COVID-19 or other contagious disease, we need to include
the nearby cities’ features in the model. We further show the
features that have top 10 largest feature coefficients when
m = 5 and n = 4 for the two algorithms in Figure S9
in the Appendix. Besides the features from the target city,
the features from the nearby cities also contribute to the
prediction of COVID-19. The top three most relevant features
for linear regression are It−1, N3(It−1), N3(It−2). The top
three most relevant features for random forest are It−1, It−2

and It−3. If we compare the most relevant features of only
using the historical data of the target city (Figure S8 in the
Appendix), we find that random forest is more stable with
regard to feature importance.
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Fig. 7: Prediction based on using the target city and nearby
cities’ historical disease data as features. (A) Daily prediction
performance (MAE) for linear regression, different curves
corresponds to using different number (m) of nearby cities’
historical data; (B) daily prediction performance (MAE) for
random forest, different curves correspond to using different
number (m) of nearby cities’ historical data; (C) 〈MAE〉
value when using different number (m) of nearby cities’
historical data as features. In (A-C), we fix n = 4. (D) Daily
prediction performance (MAE) for linear regression, different
curves corresponds to using different lengths (n) of historical
data; (E) daily prediction performance (MAE) for random
forest, different curves corresponds to using different lengths
(n) of historical data;(F) 〈MAE〉 value when using different
lengths (n) of historical data.

C. Prediction based on disease and information data

In Figure 4 and S6 in the Appendix, we showed that
information volume of a province is positively correlated with
the population, GDP, GDP per captita, electricity consumption
and highway transport volume. Particularly, provinces that are
close to Hubei tend to have high information volume. Also,
the number of infected in the provinces is highly correlated to
the information volume. Generally, the information related to
a disease starts to spread after the disease occurs. Therefore,
there is a time delay between the spread of the disease and
disease information. We use Hj

t to represent the information
volume of city j at time t. For city j, we have the daily infected
time series, i.e., Ij = {Ij1 , I

j
2 , · · · , I

j
T } and daily information

time series, Hj = {Hj
1 , H

j
2 , · · · , H

j
T }. We compute the

time-delay (τ ) Pearson correlation between these two time
series. For a specific value of τ , we compute the Pearson
correlation coefficients rjτ between the following two time
series, i.e., Ij(τ+) = {Ijτ+1, I

j
τ+2, · · · , I

j
T } and Hj(τ−) =

{Hj
1 , H

j
2 , · · · , H

j
T−τ}. The average correlation coefficient for

all the cities is denoted as r for a specific τ . We show how
r changes with τ ranging from 0 to 20 in Figure 5B (blue
curve). For each of the message, we also use natural language
processing to classify the emotion of the messages, either
positive, negative or neutral. Thus we give the correlation
between the infected time series and positive, negative and
neutral information time series as well in Figure 5B, as
shown by the yellow, grey and green curves, respectively. For
the four curves, the average correlation coefficient r shows
similar pattern. The average correlation coefficient r is always
negative, with the lowest value r = −0.39 when τ = 10
when we use all the information time series for correlation
calculation. The negative values of r indicate the two time
series are negatively correlated and also further suggest that
information may have a delay effect on suppressing disease
spreading.
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Fig. 8: (A) Random Forest prediction based on disease and
information data with m = 0, n = 4, we use τ to represent
the delay of information as features for disease prediction. (B)
Prediction based on using different groups of features: Black
curve uses target city’s disease data as features; Red curve
uses target city’s disease and information data as features;
Blue curve uses target city’s disease and information data as
features. For information data, we use a time delay τ = 10;
Purple curve uses target city and the top 5 nearest cities’
disease and information data as features; Orange uses target
city and the top 5 nearest cities’ disease and information data
as features. For information data, we use a time delay τ = 10.
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Therefore, we further consider adding features derived
from information data and explore how it is related to the
prediction of COVID-19. As linear regression always shows
worse performance than random forest when we use disease
data as features, we will focus on using random forest for
disease prediction in the following study. For each city,
we consider to use the daily information volume Hj

t as
additional features, besides the daily number of infected.
Figure 5B has shown that the correlation between disease
and information series achieves the strongest negative value
when τ = 10. We explore to use the delayed information
data as features in our models. We take m = 0, n = 4 as an
example to illustrate how we use the disease and information
data for prediction. The features that are used for learning are
{Ijt−4, I

j
t−3, I

j
t−2, I

j
t−1, H

j
t−1−(τ+3), H

j
t−1−(τ+2), H

j
t−1−(τ+1),

Hj
t−1−τ}. We show 〈MAE〉 of random forest for the

prediction of 10 days in Figure 8A. With the increase of
delay τ , 〈MAE〉 decreases as well. We achieve the lowest
〈MAE〉 when τ = 10. This means that using the information
10 days ago can help for the prediction of disease most, the
result is consistent with the correlation between disease and
information data we show in Figure 5B.

To further show how disease information can help for the
prediction of disease, we compare the performance of using
different groups of features in Figure 8B. The first group
of features are the ones based on the target city’s historical
disease data. The results are given by the grey curve with
blue circles in the figure. The second group of features are
based on the historical disease and information data of the
target city. We use the grey curve with yellow circles to
represent in the figure. In the third group (grey curve with
grey circles in the figure), we use the historical disease data
and the information data of the target city as features, but we
consider the information with a τ = 10 days delay. In the
fourth group (grey curve with dark blue circles), we consider
to use the target city and its top 5 nearest cities’ disease and
information data as features. In the fifth group (grey curve
with pink circles), the only difference with that of fourth
group is that we consider the information data has a τ = 10
days delay. If we compare the first three curves, we find that
including the features from information can help to decrease
the 〈MAE〉, i.e., increase the prediction performance. To be
specific, the second group uses information features without
delay, it can decrease 〈MAE〉 for n ∈ [1, 4]. Particularly, the
time-delayed information (grey curve with grey circles) can
largely increase the prediction performance for all the values of
n compared to using information without delay. In the last two
groups, we add disease and information features from the top
five nearest cities. The last two groups show relatively better
performance than the first three groups. The fifth group which
uses delayed information features show better or sometimes
similar performance compared to the fourth one which uses
information without delay. The five groups of features we use
indicate that both information and the features from nearby
cities can help to increase the prediction performance. In
addition, we find that each of the five curves shows lowest
〈MAE〉 when n = 4. We show the top 10 most relevant

features for the second, third, fourth and fifth group when
n = 4 in Figure S10 in the Appendix, as we have already
shown the feature coefficients of the first group in Figure 17
in the appendix. In all the five groups, they share the same
top 2 most relevant features, i.e., It−1 and It−2. Particularly,
the feature coefficient of It−1 is always larger than 0.8, which
means It−1 plays an essential role in predicting the disease.
In Figure S10, we also find that the features from information
and nearby cities play important roles in predicting the disease.
We note that we also test on using the number of positive,
negative or neutral messages as features in the algorithms.
However, they show worse performance compared with using
all the messages as features, so we haven’t shown the curves
in the Figure. Regarding to the content of the messages, we
extracted Chinese words which have the same meaning with
the following words: ’Policy’, ’Social distancing’, ’mask’ and
’vaccine’. We count how many times these four kinds of words
appear everyday and show how they are correlated with the
infected time series with lag τ , respectively. The correlation
coefficients are given in Figure 5C and 5D, in which 5D shows
the average correlation coefficients when τ ∈ [0, 20]. We find
these four types of words are almost negatively correlated
with the infected time series when τ changes (except small
τ values). That is to say, these four words are influential
to control disease, especially for words that have the same
meaning as ’vaccine’ and ’policy’. Additionally, we also test
on using the data from January 25th to February 21st for
training and test. That is to day, we use the first 21 days as
training set and the other 7 days as test set. The results are
given in Figure S11 in the Appendix. We find similar results,
i.e., both the features from nearby cities and information are
helpful for improving the prediction accuracy.

IV. METHOD AND DATA DESCRIPTION

A. Data description

Information data. We collect the information data of
COVID-19 from Qingbo Bigdata (www.gsdata.cn) based on
the Chinese words that are in the medical discourse about
COVID-19. The key words that we select are ’wuhan’,
’feiyan’, ’xinguan’, ’yiqing’. We track the omnimedia informa-
tion from January 25th, 2020 to March 24th, 2020, including
Sina Weibo (http://weibo.com/, Chinas largest micro-blogging
system), authorized mobile news apps, articles on Wechats
official accounts (Chinas most popular instant message app),
ordinary news webpages, newspapers as well as various online
forums. We also record the location (city) of information
source. And there are totally 322 cities in our dataset (we
exclude the cities that have zero disease infected cases),
including 20 county-level cities. In total, we have collected
163.1 million of messages, in which 154.8 million messages
contain both time and geographic information. The data shows
how people reflect on the pandemic evolves with time. The
detailed analysis of the data on each of the platforms is given
in Section 1.1 in the Appendix.

Disease and other data. The data of daily infected cases of
COVID-19 for every city is from China Centers for Disease
Control and Prevention (CDC). We collect data from January
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25th, 2020 to March 24th, 2020. We only consider the cities
that have infected cases, i.e., the cities that have zero infected
cases are excluded, resulting in daily infected data for 322
cities. The resident population data is collected from ’China
Statistical Yearbook 2019’.

B. Linear regression

Linear regression (LR) is a regression algorithm that aims to
study the linear relationships between variables. Given a data
set Dn = {yi, xi1, xi2, · · · , xim}ni=1 with n training samples,
xi = (xi1, xi2, · · · , xim) are treated as features and yi is the
training label. We use linear regression to train the data. The
objective of linear regression is as follows:

min

n∑
i=1

(yi −
m∑
j=1

xijβj)
2, (4)

where n is the number of training samples, m is the dimension
of each xi, βj is the regression parameter we need to learn.

C. Random forest

Random forest (RF) is a learning algorithm that builds an
ensemble of decision trees and merges them together to get an
accurate and stable prediction. Each decision tree in a random
forest is trained on a data point sample, which is randomly
chosen from the rows and columns of training data. Therefore,
we consider a random set of features for splitting at each
decision node. Random forest has the advantage of learning
the non-linear relationship between features and labels. Also,
random forest can help to avoid overfitting by combining many
decision trees with randomness. It uses bagging in the training
process. Given a data set Dn = {yi, xi1, xi2, · · · , xim}ni=1

with n training samples, xi = (xi1, xi2, · · · , xim) are treated
as features and yi is the training label. The data point sample
used for fitting in each decision tree is generated by repeatedly
selecting a random sample with replacement of Dn. Suppose
the number of trees we consider is B, for each decision tree
b ∈ [1, B], we do the following two steps:

• We randomly do the sampling with replacement on Dn
to get n training examples, we name them as Dbn. Data
Dbn is the a data point sample we mentioned previously.

• We train decision tree b on Dbn.
When we do the prediction, the prediction on the test set is

the average over all the decision trees. The bagging procedure
can decrease the variance of the model without increasing the
bias, which can lead to better prediction performance.

V. CONCLUSION

In this paper, we worked on the co-evolution processes of
the spreading of COVID-19 and its information in China.
The information data of COVID-19 came from well-known
Chinese online social medium, such as Sina Weibo, autho-
rized mobile news apps, articles on Wechats official accounts,
etc. Therefore, the data is quite representative with regard
to the public reaction to such a severe contagious disease.
We visualized how the disease and information are spatially
localized in China via using the province-level data. We find

that there is a delay between the spread of COVID-19 and its
information, i.e., the peak of the disease is at the beginning
of February, 2020, whereas the peak of information is around
the beginning of March, 2020. Additionally, we researched on
how the information data, i.e., the number of messages, in each
province is correlated with the disease data and other variables.
The correlation shows a province with more infected numbers
tends to be more mentioned online. Also, both information and
disease shows negative correlation with the distance to Hubei.
That is to say, the population tends to have more attention
on the disease when it spatially comes to their neighborhood.
We also showed weekly and hourly pattern of the messages
in each platform in the Appendix.

Based on the analysis of the disease and information time
series, we proposed to use different characteristics to predict
the number of infected in the city-level, including 322 cities
in China which have nonzero infected cases. We use two
machine learning algorithms, i.e., linear regression and random
forest, to train and predict the number of infected. Meanwhile,
the features that are used in the algorithms can be classified
into three categories: (i) we use the historical number of
infected in each target city as the features; (ii) Besides (i),
we also include the historical number of infected of the
target cities’ neighboring cities; (iii) Besides (i) and (ii), we
include the number of messages in each target city and its
neighboring cities as features. We find that random forest
always performs better than linear regression when we use
different categories of features. Including the features from
neighboring cities, i.e., the cases of (ii) and (iii), improves the
prediction performance. This is consistent with the correlation
analysis given at the province level, where we find both the
distance and information is highly correlated with the number
of infected.

The use of online social media enables us to make the
observational analysis between COVID-19 and its information,
and thus explore whether information can be useful for the
prediction of disease. The results shown in this work may
suggest a new way of predicting emerging infections. Howev-
er, we claim there are some limitations which is beyond the
analysis of this work. We only explore the COVID-19 data in
China, the data from the rest of the world is not included.
We deem that it should be very interesting to explore the
co-evolution of these two processes in the other countries,
especially in the countries that have several waves of epidemic.
As a matter of fact, there are still epidemic outbreaks in
the other countries where people actually are tired against
the disease. The multiple waves of epidemic [26], [27], [28],
[29] and the public’s tiredness against the disease may induce
different co-evolution phenomena between these two spreading
processes. Additionally, we only consider using the number of
messages as features for the prediction, the reliability of the
information is beyond our analysis. We claim that it is also
an interesting direction to explore whether we need to exclude
the fake news in the prediction [30].

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3217419

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

PLATFORM-BASED INFORMATION DATA ANALYSIS

In Figure S1, we show how the number of messages evolves
every week on each of platforms we consider. The total
number of messages posted in each platform is given in
Figure S1 A. The top one used platform for posting message
is Wechat. The number of messages on Newspapers is the
least among the six platforms, possibly because Newspapers
is a more official platform compared to the others. Different
curves (except the black one which is the average of the
eight weeks) represent the number of messages in different
weeks. The curves show that the number of messages tend
to be lower, i.e., below the average value (i.e., black curve),
in the first three weeks in most of the platforms. For week
4 to 8, the number of messages are always higher than the
average value. Besides, the number of messages are lower in
the weekend than that of weekdays in most of the platforms
except authorized mobile news apps, which has relatively
stable number of messages everyday. This means people tend
to talk about disease online more often in weekdays. We
further show the number of messages in more fine-grained
level, i.e., every hour. The results are shown in Figure S3 for
five platforms except Wechats official accounts. Because all
the articles in Wechats official accounts are released at 12:00
am everyday, there is no need to do the hour analysis for
this platform. Newspapers, which is a more official platform,
is more active in posting messages during the morning every
weekday. The other platforms, i.e., Sina Weibo, authorized
mobile news apps, news webpages and online forums, share
similar posting behavior, i.e., people are more active in posting
messages during the morning and afternoon everyday.
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Fig. S1: The number of messages on each Monday to Sunday
for platforms: (A) Sina Weibo; (B) Authorized mobile news
apps; (C) Wechat; (D) News Webpages; (E) Newspapers; (F)
Online forums. The black dash lines with scatters are the
average number of messages of the eight weeks.
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Fig. S2: The average number of messages in each hour
for Monday to Sunday for platforms: (A) Sina Weibo; (B)
Authorized mobile news apps; (C) News Webpages; (D)
Newspapers; (E) Online forums. We use the size of the circle
to represent the volume of the messages.
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PROVINCE-LEVEL DATA ANALYSIS

Province Infected num Messages num Province Infected num Messages num
Beijing 559 54547251 Inner Mongoria 94 862525
Guangdong 1433 40819449 Ningxia 75 506404
Anhui 990 2331567 Qinghai 18 399438
Fujian 322 2613684 Shandong 769 4416295
Gansu 136 1326963 Shanxi 250 1855334
Guangxi 254 1253024 Shaanxi 134 1553156
Guizhou 146 1112929 Shanghai 433 7247728
Hainan 168 695407 Sichuan 547 3459870
Hebei 319 2228661 Tianjin 145 1271333
Henan 1274 2940039 Tibet 1 294265
Heilongjiang 484 1337062 Xinjiang 76 741605
Hubei 67801 2732710 Yunnan 176 1094092
Hunan 1018 2414688 Zhejiang 1241 4186899
Jilin 77 1604908 Chongqing 578 1394132
Jiangsu 638 3707981 Taiwan 216 418516
Jiangxi 936 1595464 Macao 26 59772
Liaoning 127 1599408 HongKong 386 217334

TABLE S1: The total number of infected cases and messages
in each province.
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Fig. S4: Daily number of infected (messages) in each province.

PREDICTION MODEL ANALYSIS

Fig. S5: Top five most mentioned provinces visualization.
For the top 5 most mentioned provinces, i.e., Hubei (A),
Guangdong (B), Beijing (C), Zhejiang (D) and Henan (E), we
visualize how they are mentioned by the other provinces in
China. For example, Figure A shows how Hubei is mentioned
by messages from all the other provinces, the size of the
circle represents the fraction of mentioned from the province
to Hubei.
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Fig. S6: The Pearson correlation between the total number of
messages in each province and (A) GDP in each province; (B)
GDP per capita in each province; (C) electricity consumption
in each province; (D) highway transport volume in each
province.
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Fig. S7: The Pearson correlation between the total number of
infected in each province and (A) GDP in each province; (B)
GDP per capita in each province; (C) electricity consumption
in each province; (D) highway transport volume in each
province.
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Fig. S8: The values of feature coefficients for (a) linear
regression and (b) random forest. We choose to use the
previous 4 days of target city’s historical data as features, i.e.,
n=4.
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Fig. S10: Top 10 most relevant features for the groups of
features we use in Figure 8B, we fix n = 4.
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Fig. S11: Prediction of using 21 days for training set and 7
days for test set. The training set starts from January 25th to
February 14th. The test set is from February 15th to 21st. (A)
Prediction based on using the target city’s historical disease
data as features. (B, C) Prediction based on using the target
city and nearby cities’ historical disease data as features, here
we choose m = 0, 1, 3, 5 to explore the performance of the two
algorithms. (D) Prediction based on using different groups of
features: Black curve uses target city’s disease data as features;
Red curve uses target city’s disease and information data as
features; Blue curve uses target city’s disease and information
data as features. For information data, we use a time delay
τ = 10; Purple curve uses target city and the top 5 nearest
cities’ disease and information data as features; Orange uses
target city and the top 5 nearest cities’ disease and information
data as features. For information data, we use a time delay
τ = 10.
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