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As large language models (LLMs) gradually demonstrate their potential to boost
productivity and become integral tools for problem-solving in daily life worldwide,
understanding the linguistic inequalities they introduce is becoming increasingly
important. Prior research has primarily focused on static analyses of disparities in
existing knowledge and capabilities of LLMs across languages. However, LLMs are
continuously evolving, acquiring new knowledge to provide current, relevant responses
and deliver precise, expert-level answers in specific domains. Investigating linguistic
inequalities within this dynamic learning process is, therefore, also essential. In this
paper, we explore inequalities in new knowledge learning by LLMs across different
languages and four key dimensions: effectiveness, transferability, prioritization, and
robustness. Through extensive experiments in both in-context learning and fine-tuning
settings, with proprietary and open-source models, we reveal four key findings: 1) LLMs
face greater challenges in efficiently and accurately learning new knowledge in lower-
resource languages; 2) knowledge learned by LLMs tends to be more easily transferred
to higher-resource languages than to lower-resource ones; 3) new knowledge in higher-
resource languages is more likely to be retained and prioritized; and 4) LLMs are more
robust against incorrect or misleading information in higher-resource languages. We
further analyze the underlying causes of these inequalities from linguistic perspectives,
pretraining characteristics, and tokenizer design, and propose a preliminary mitigation
strategy through the lens of linguistic neurons. This work highlights the urgent need
to recognize and address emerging linguistic inequalities in the development of LLMs.

linguistic inequality | large language models (LLMs) | knowledge acquisition

Large language models (LLMs), with their comprehensive knowledge storage, easy
accessibility, and ability to handle a wide range of tasks, are increasingly being applied
in various domains [e.g., education (1), medicine (2), scientific research (3, 4)] and in
daily life, significantly boosting productivity (5). This transformation is both inevitable
and global in scale. One notable example is ChatGPT, which, as of July 2025, serves 700
million weekly active users worldwide-a substantial portion of whom interact with LLMs
in languages other than English (6–8). Given such widespread adoption, it is crucial to
study fairness in multilingual environments to ensure that users of different languages
can benefit equally from these systems (9).

Prior research on linguistic inequalities in LLMs has primarily examined static
disparities in knowledge and capabilities across languages (10–15). For example, some
studies have analyzed the amount of factual knowledge encoded in different languages
and revealed significant variations. In particular, they show that knowledge available
in low-resource languages remains limited due to the lack of pretraining data (16–18).
These findings have advanced our understanding of how disparities in knowledge and
capabilities across languages give rise to linguistic inequalities in LLMs. However, what
remains underexplored is how such inequalities manifest in the dynamic process of
learning new knowledge-a perspective that is becoming increasingly important as LLMs
continue to evolve.

Learning new knowledge is crucial for LLMs, as illustrated in Fig. 1A. On the one
hand, general-purpose LLMs are pretrained on static datasets collected before the models
are released and therefore may not include real-time or recent information. As a result,
their knowledge bases can quickly become outdated. To ensure that these models provide
current and relevant responses, it is essential to continuously integrate new knowledge. On
the other hand, although pretrained LLMs are trained on diverse and extensive datasets,
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they often lack depth in specialized domains. Acquiring domain-
specific knowledge enables LLMs to deliver more precise, expert-
level answers in those areas. As depicted in Fig. 1B, two primary
techniques have been developed and widely adopted to enhance
LLMs with new knowledge (19). First, through in-context
learning, LLMs can acquire new information from examples,
instructions, or knowledge retrieved from external databases-all
without requiring parameter updates (20). Second, fine-tuning
LLMs on specific datasets or tasks allows them to gain knowledge
tailored to particular needs (21). A practical example of this is
ChatGPT’s fine-tuning API, which enables users to customize
the model for specialized purposes (22).

In this study, we aim to reveal, analyze, and mitigate linguistic
inequalities in new knowledge learning by LLMs. We first
conceptualize these inequalities along four key dimensions-
effectiveness, transferability, prioritization, and robustness-and
propose a comprehensive evaluation framework. Specifically, we
investigate the following research questions under two settings
(in-context learning and fine-tuning): 1) Can LLMs learn
new knowledge equally effectively across different languages
in terms of efficiency and accuracy? 2) Can the knowledge
acquired by LLMs be transferred equally across languages? 3)
When new knowledge in two languages conflicts, can LLMs
treat them equally? and 4) When exposed to incorrect or
misleading information, can LLMs resist such errors equally
across languages? We then seek to identify the underlying causes
of these linguistic inequalities based on linguistic knowledge,
pretraining characteristics, and tokenizer design. We also leverage
the identified features to model knowledge transferability across
languages. Finally, through the lens of linguistic neurons (23, 24),
we explore their overlaps, examine how they relate to cross-lingual
knowledge transfer, and investigate how intervening in these
neurons can help mitigate linguistic inequalities.

To conduct the above study, we selected 19 languages that
differ in their language properties, including 7 high-resource, 5
medium-resource, and 7 low-resource languages. Additionally,
we constructed four multilingual parallel datasets covering both
new knowledge (fictional and real) and general knowledge
(generated and human-created). For the new knowledge datasets-
both hypothetical question–answer pairs set in a future world
and real-world medical knowledge-LLMs generally struggle to
provide accurate answers in any language, which enables us to
examine inequalities in the new knowledge learning process.
For the general knowledge datasets-both generated and human-
created-LLMs can accurately answer most questions across
languages, which allows us to explore how they resist errors in
different linguistic contexts.

Extensive experiments were conducted on both proprietary
and open-source models (GPT-4o-Mini, Llama-3.1-8B, Qwen3-
8B, and Aya-Expanse-8B). These experiments reveal four key lin-
guistic inequalities introduced by LLMs (Fig. 1C ): 1) compared
to higher-resource languages, LLMs face greater challenges in
learning new knowledge in lower-resource languages in terms
of both efficiency and accuracy; 2) new knowledge acquired
by LLMs can be more easily transferred to higher-resource
languages than to lower-resource ones; 3) when new knowledge in
two languages conflicts, knowledge in higher-resource languages
tends to be prioritized; and 4) LLMs are generally more resistant
to incorrect knowledge in higher-resource languages than in
lower-resource languages. Through exploratory analyses as well
as linear and nonlinear modeling, we identify several factors that
influence these inequalities. Specifically, linguistic characteris-
tics (e.g., differences in phylogeny, syntax, and geographical

distribution), pretraining data proportions and tailored opti-
mizations, and tokenizer quality all play crucial roles in shaping
cross-lingual differences in model performance and determining
the transferability of knowledge. Leveraging these features, we
are able to predict cross-lingual knowledge transferability with
relatively high accuracy. Furthermore, we uncover a relationship
between overlaps in linguistic neurons and the transferability of
knowledge across languages. By intervening on these neurons-
for instance, through activation-we demonstrate a potential
pathway to mitigating such inequalities. Overall, our study
shows that in the context of new knowledge acquisition, higher-
resource languages consistently exhibit superiority over lower-
resource languages across the four dimensions of effectiveness,
transferability, prioritization, and robustness. Coupled with
the underrepresentation of lower-resource languages in existing
knowledge and capabilities of LLMs (16–18), these results
highlight the persistence and potential widening of linguistic
inequalities. Addressing these inequalities and ensuring multilin-
gual knowledge equality are critical in the continued development
of LLMs to foster responsible and inclusive AI.

Results

Language and Model Selection. To investigate linguistic in-
equalities, we adopted two criteria for language selection. First,
we included a balanced number of high-, medium-, and low-
resource languages to examine how LLMs perform across dif-
ferent resource levels. Second, we ensured variation in linguistic
characteristics, such as phylogeny, syntax, phonology, inventory,
and geographical distribution, to better assess potential factors
contributing to inequalities. Specifically, following prior research
in multilingual natural language processing (NLP) (25), we
classified languages into resource levels based on their proportions
in the CommonCrawl corpus, which was used to pretrain GPT-3
(26). A language is considered high-resource if its data ratio
exceeds 1%, medium-resource if it falls between 0.1% and 1%,
and low-resource if it is 0.1% or below. A language can still
be categorized as medium- or low-resource even if it is spoken
by many people, as long as digital and annotated data remain
limited. For example, Hindi (609.1 million speakers), Tamil
(86.3 million speakers), and Swahili (87.2 million speakers) are
categorized as medium- or low-resource, whereas Italian, which
has only 66.2 million speakers, is considered high-resource due to
its greater digital presence (27). Investigating inequalities across
high-, medium-, and low-resource languages is therefore both
meaningful and necessary. As shown in SI Appendix, Table S1,
our selected set includes 7 high-resource languages (English,
Chinese, Japanese, French, Spanish, Italian, Portuguese), 5
medium-resource languages (Swedish, Korean, Danish, Thai,
Hindi), and 7 low-resource languages (Tamil, Mongolian, Welsh,
Swahili, Turkmen, Scottish Gaelic, Zulu). In addition, we in-
cluded 4 multilingual LLMs-both proprietary and open-source-
GPT-4o-Mini, Llama-3.1-8B, Qwen-3-8B, and Aya-Expanse-
8B. These models are widely adopted in daily life and officially
support different languages (SI Appendix, Table S1) (28–30).
This setup enables us to assess not only the prevalence of linguistic
inequalities but also the effects of tailored optimizations on model
outcomes.

Multilingual Parallel Dataset Construction. To investigate in-
equalities in new knowledge learning by LLMs across different
languages, we carefully constructed four multilingual parallel
datasets.
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A B

C

Fig. 1. (A) LLMs struggle to provide current, relevant responses and to deliver precise, expert-level answers in specific domains. (B) There are two techniques
to enhance LLMs with new knowledge: in-context learning and fine-tuning. (C) Four key inequalities emerge in new knowledge learning by LLMs across different
languages.

New knowledge datasets. To simulate real-world scenarios in
which model developers enhance LLMs with new knowledge
to provide timely and domain-specific responses, we created
two datasets, each containing 200 question–answer pairs.* The
first is a fictional new knowledge dataset generated by GPT-4o
and set in a future world very different from the current one,
which serves as a proxy for unseen information (SI Appendix,
Table S10). To ensure diversity, prompts were conditioned
on topics from the Information Coding Classification system
(31), which covers almost all extant 6,500 knowledge fields (SI
Appendix, Table S2 and Prompt S1). The second dataset focuses
on medical knowledge and was filtered from MultiMedQA (32),
a benchmark that integrates six medical question–answering
datasets covering professional medicine, research, and consumer
queries (SI Appendix, Table S11). The sampled items cover
diverse topics and LLMs fail to provide accurate answers, which
indicates that these samples are genuinely new knowledge for
them. Moreover, many of the questions include long contexts
(e.g., patient symptom descriptions), which makes them more
representative of real use cases.

*Assume that H high-resource languages, M medium-resource languages, and L low-
resource languages are selected, and we evaluate the performance of N models on D
datasets of size S each (each model is trained for E epochs on every dataset in a fine-
tuning setting). The overall count of requests made to the models is given by ND[SE(H +

M+ L)+ 2S(H+M+ L)2 + 2S(H+M+ L)(HM+HL+ML)]. To balance the cost and the
reliability of the experimental results, a set of S = 200 question-answer pairs per dataset
per language is considered a reasonable size for this study. In this case, the number of
requests made to the models would be approximately 8.76M.

General knowledge datasets. We also constructed two general
knowledge datasets, each with 100 question–answer pairs.† One
was generated by GPT-4o, again using topic conditioning to
ensure broad coverage (SI Appendix, Table S12 and Prompt S2).
The other was created by humans (33) and contains questions
and answers suitable for children aged 4 to 7 and students up to
grade 7 (SI Appendix, Table S13).

Following standard practices in multilingual NLP (25),
we translated all datasets into 18 additional languages using
Google Translate.‡ To assess translation quality, we conducted
backtranslation and compared results with the original English
pairs in terms of i) similarity, measured by cosine similarity
of text-embedding-3-small§ embeddings, and ii) consistency,
evaluated by GPT-4o (SI Appendix, Prompt S3). As shown in
SI Appendix, Table S3, the translations demonstrate high overall
quality. These multilingual pairs were then used either as fine-
tuning data or as in-context examples. To avoid models simply
relying on memorization, the questions, which were used to test
models, were paraphrased by GPT-4o (SI Appendix, Prompt S4).
Additionally, GPT-4o was instructed to generate a conflicting
answer for each new knowledge pair (to study knowledge conflict;
SI Appendix, Prompt S5) and an incorrect answer for each

†Considering the context length supported by LLMs and the practical scenario in which
irrelevant information is often prefiltered by databases and search engines, a set of 100
question-answer pairs per dataset per language is a reasonable size for this study.
‡https://translate.google.com/.
§https://platform.openai.com/docs/models/text-embedding-3-small.
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Fig. 2. The performance of four models in learning new knowledge on two datasets. Compared to higher-resource languages (orange curves), LLMs face
greater challenges in learning new knowledge in lower-resource languages (blue curves), both in terms of efficiency and accuracy.

general knowledge pair (to test robustness; SI Appendix, Prompt
S6). Results confirm the usability of all four datasets. For the
new knowledge datasets, all tested models consistently failed
to produce correct answers in any language, which indicates
that the knowledge is indeed new to them (SI Appendix, Table
S4). In contrast, the models performed well on the two general
knowledge datasets and can accurately answer most questions
across languages (SI Appendix, Table S5).

Effectiveness Evaluation. In this section, we use the constructed
new knowledge datasets to evaluate the effectiveness of LLMs in
learning new knowledge across different languages through fine-
tuning.¶ Specifically, we assess effectiveness along two dimen-
sions: 1) efficiency, measured by the number of fine-tuning
epochs required for response accuracy to stabilize, and 2) final
accuracy, defined as the accuracy of responses after stabilization.
To ensure fair comparisons across languages, we keep the amount
of knowledge to learn (200 question–answer pairs) and all
hyperparameters (e.g., learning rate) the same.

Fig. 2 shows how the response accuracy of all tested models
changes as the number of fine-tuning epochs increases. We
make two main observations from the results. First, based
on the convergence speed of the curves, LLMs learn new
knowledge more efficiently in higher-resource languages. For
example, Qwen3-8B reaches approximately 60 to 90% accuracy
on fictional new knowledge questions after just four epochs of
fine-tuning in high- and medium-resource languages, whereas it
requires eight or more epochs to achieve comparable performance
in low-resource languages. Second, the final accuracy attained by
LLMs is also higher in higher-resource languages (except for
Aya-Expanse-8B on Thai, which was not optimized for this
language). For example, GPT-4o-Mini exceeds 90% accuracy
on fictional new knowledge in high- and medium-resource
languages, while plateauing at around 60 to 80% in low-resource
languages.

These results underscore persistent disparities in the ability
of LLMs to learn new knowledge across languages. Even with

¶Under the in-context learning setting, new knowledge is explicitly incorporated into input
prompts, and LLMs do not need to acquire it step by step. Therefore, for the research
question “Can LLMs learn new knowledge equally effectively across different languages in
terms of efficiency and accuracy?,” we focus primarily on fine-tuning.

extended fine-tuning, performance in lower-resource languages
lags behind that in higher-resource languages. This suggests that
additional resources and targeted strategies are needed to improve
the accessibility and accuracy of new knowledge for users of lower-
resource languages.

Transferability Evaluation. In this section, we examine whether
the knowledge acquired by LLMs can be transferred equally across
languages. For example, as illustrated in Fig. 1C, we assume that
a model has learned a piece of knowledge in one language (e.g.,
English question: How do individuals track their health in 2048?
English answer: Genetic analytics) through either fine-tuning
or in-context learning. We then query the model in a different
high-, medium-, or low-resource language to assess whether its
response accuracy remains consistent across languages or if there
are significant disparities. During fine-tuning, as shown in Fig. 2,
accuracy generally stabilizes after 12 epochs; accordingly, we focus
on models fine-tuned for 12 epochs in different languages for our
analysis.

SI Appendix, Figs. S1 and S2 present the performance of all
tested models on the fictional new knowledge dataset under both
in-context learning and fine-tuning settings. Our findings are as
follows. First, knowledge acquired in one language is not always
fully transferable to others. For example, when GPT-4o-Mini
learns fictional new knowledge in English through in-context
learning, it achieves 100% response accuracy when queried in
English, but its accuracy declines sharply in other languages.
Notably, performance falls to just 68% when tested in Tamil.
Second, transferability is stronger among certain languages, espe-
cially those with close linguistic ties (e.g., French, Spanish, Italian,
and Portuguese). Third, model-specific optimizations influence
transferability: For example, in Aya-Expanse-8B, transferring
new knowledge either from Thai to other languages or from
other languages into Thai is more difficult than in the other three
models. Fourth, linguistic inequalities arise when knowledge
learned in one language is accessed through others. As shown
in Fig. 3 and SI Appendix, Fig. S3, knowledge is transferred
more reliably to higher-resource languages than to lower-resource
ones. This presents a significant disadvantage for users of low-
resource languages when new knowledge is introduced in other
languages.
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Fig. 3. Inequality in transferring new knowledge is examined under the in-context learning setting across four models and two datasets. The angular axis
indicates the languages into which new knowledge is injected, while the three curves show the average accuracy when the models are queried in high-, medium-,
and low-resource languages. The results reveal a significant disadvantage for users of low-resource languages when new knowledge is introduced in other
languages.

Prioritization Evaluation. In this section, we examine how LLMs
respond when new knowledge from two different languages con-
flicts. For example, as illustrated in Fig. 1C, suppose the learning
materials contain conflicting knowledge from a higher-resource
language (English) and a lower-resource language (Tamil). In
English, the answer to the question “How do individuals track
their health in 2048? is “genetic analytics,” while in Tamil the
answer is “wearable health monitors.” When the model is then
queried in a third language, such as Chinese or Mongolian, we
are interested in whether its response aligns with the knowledge
from the higher-resource language (English) or the lower-resource
language (Tamil).

Specifically, we conducted experiments with all tested models
under both fine-tuning and in-context learning settings. We
constructed 72 scenarios in total by selecting 24 language pairs
from each of the high-/low-, medium-/low-, and high-/medium-
resource combinations. Fig. 4A shows two examples of such
conflicts for GPT-4o-Mini on the fictional new knowledge
dataset in the fine-tuning setting-specifically, the English-Zulu
and Hindi-Turkmen cases. We find that when queried in other
languages, the model’s responses predominantly align with the
higher-resource language knowledge. For instance, when asked
in Danish, 87% and 71% of responses followed the knowledge
from English and Hindi, respectively. We further calculated the
average consistency of responses with higher-resource language
knowledge across all conflict scenarios. Raincloud plots for all
72 scenarios, under both fine-tuning and in-context learning
settings across two datasets, are shown in Fig. 4B. These
visualizations reveal that the alignment with higher-resource
language knowledge is consistently and significantly above 50%.
This indicates that when conflicting knowledge comes from
higher- versus lower-resource languages, models tend to prioritize

the higher-resource version, even though the two are of equal
quality.

The implications of these results for social fairness are
self-evident. When knowledge from higher-resource languages
is preferentially adopted, it perpetuates linguistic hegemony
(8). Knowledge in higher-resource languages is often seen as
“standard” or “authoritative,” while knowledge in lower-resource
languages is marginalized. This not only reinforces the dominance
of higher-resource languages in the global knowledge system but
also undermines the representation of lower-resource languages.
Such marginalization can erode cultural identity and devalue the
knowledge of lower-resource language communities.

Robustness Evaluation. The learning materials used by LLMs,
whether stored in databases or retrieved from the internet,
may inevitably contain errors. In this section, we investigate
how LLMs respond when exposed to such misinformation, and
how their susceptibility varies across languages. For example, as
illustrated in Fig. 1C, suppose that external materials contain a
piece of incorrect knowledge (e.g., Question: What will water
become when it freezes? Answer: Steam). We then pose a similar
query to the models—If you put water in the freezer, what will it
turn into?—and observe whether they answer correctly (“ice”) or
produce the erroneous response (“steam”) due to the influence
of misinformation.

Our experiments were conducted under two settings: in-
context learning and fine-tuning. As shown in Fig. 5A, the
accuracy of responses to general knowledge questions declines as
the number of fine-tuning epochs increases, but the rate of decline
varies across languages. Similarly, Fig. 5B highlights disparities
in resistance to misinformation under the in-context learning
setting (with the radial axis representing the ratio of accuracy
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Knowledge conflicts between English–Zulu and Hindi–Turkmen (GPT-4o-Mini | In-context Learning | Fictional New Knowledge)

Inequality in knowledge conflicts

A

B

Fig. 4. (A) Specific knowledge conflict scenarios for GPT-4o-Mini under the in-context learning setting on the fictional new knowledge dataset. When knowledge
introduced in higher-resource languages conflicts with that in lower-resource languages, the model’s outputs in other languages predominantly align with
knowledge from the higher-resource languages. (B) Inequality in knowledge conflicts is examined across four models, two settings, and two datasets. The
average consistency of model responses with higher-resource language knowledge is computed across all conflict scenarios. The visualizations reveal that this
consistency is significantly above 50% and indicate that new knowledge in higher-resource languages is often prioritized over that in lower-resource languages.

with versus without misinformation, and darker colors indicating
lower relative accuracy). LLMs tend to maintain higher accuracy
in higher-resource languages, even when misinformation is
present. By contrast, the inclusion of misinformation in fine-
tuning samples or prompts leads to a steep drop in accuracy
for lower-resource languages when answering general knowledge
questions. These findings highlight an underlying inequality, in
which users of lower-resource languages suffer disadvantages in
accessing knowledge through LLMs. They are more likely to
receive lower quality or misleading outputs compared to users of
higher-resource languages. As a result, users of lower-resource
languages may lose confidence in AI systems, which in turn
undermines the overall reliability of LLMs in these languages.

Determinants of Cross-Lingual Performance Disparities. Why
do models perform differently across languages? In other words,
why do LLMs generally achieve better performance in higher-
resource languages, both in learning new knowledge and in re-
sisting misinformation? In this section, we analyze the underlying
causes of these linguistic inequalities by examining pretraining
characteristics and tokenizer design (Fig. 6).

We propose two main hypotheses. First, the more pretraining
data a language has, the better models perform on it, as this allows
them to capture grammar, semantics, and lexical nuances more
accurately. Because the pretraining corpora of our tested models

are undisclosed, we use the data proportion of each language in
the CommonCrawl corpus as a proxy (26).

Second, a higher-quality tokenizer improves model perfor-
mance in a given language by producing tokenizations that
are efficient, information-rich, and semantically aligned. Specif-
ically, we consider three groups of metrics: 1) Compression-
related indicators: corpus token count [the total number of
tokens required to represent text in a given language (34)]
and Rényi efficiency [which measures how effectively a tok-
enizer compresses text under a given frequency distribution
(35)]. Greater compression increases the information density
of a fixed-length sequence, which may enhance performance;
2) Information-related indicator: average rank, a frequency-
weighted average of token ranks that captures how broadly the
vocabulary is utilized (36). When the vocabulary of a language
is distributed over a large number of tokens, models may
acquire more reliable lexical information; and 3) Morphology-
related indicator: MorphScore, which quantifies the extent to
which tokenizer-generated boundaries align with morpheme
boundaries (with optional adjustments for one-token words and
frequency scaling) (37, 38). Tokenizers that produce boundaries
aligned with morpheme boundaries are often assumed to improve
performance.

As shown in Table 1 and SI Appendix, Tables S6 and S7,
we calculate Spearman correlations between these features and
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Fig. 5. (A) Inequality in resisting errors under the fine-tuning setting. As models are fine-tuned on incorrect knowledge, their overall accuracy decreases.
However, this decline is more pronounced in lower-resource languages. (B) Inequality in resisting errors under the in-context learning setting. Here, the radial
axis represents the ratio of accuracy with versus without misinformation, with darker colors indicating lower relative accuracy. LLMs tend to show stronger
resistance to misinformation in higher-resource languages than in lower-resource languages.

relative performance across languages, in terms of both effective-
ness and robustness. The results reveal that data proportion,
corpus token count, and average rank are all significantly
correlated with performance. Specifically, languages with larger
data proportions, more efficient tokenization, and broader
vocabulary distributions exhibit stronger outcomes. Among the

compression-related metrics, corpus token count emerges as a
stronger predictor of performance than Rényi efficiency. By
contrast, morphological alignment shows no statistically signifi-
cant correlation, consistent with prior work and challenging the
common assumption that morphologically aligned tokenization
substantially improves model quality (37, 38).
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Table 1. Spearman correlations between different features and the relative learning effectiveness of each model
across languages

Spearman correlation

GPT-4o-Mini Llama-3.1-8B Qwen3-8B Aya-Expanse-8B

Category Factor Fictional Medical Fictional Medical Fictional Medical Fictional Medical

Pretraining Data proportion 0.9070.9070.907 0.8250.8250.825 0.9060.9060.906 0.8350.8350.835 0.8670.8670.867 0.9260.9260.926 0.8810.8810.881 0.8560.8560.856

Corpus token count −0.804−0.804−0.804 −0.874−0.874−0.874 −0.801 −0.789−0.789−0.789 −0.744−0.744−0.744 −0.830−0.830−0.830 −0.784−0.784−0.784 −0.858−0.858−0.858
Average rank 0.6260.6260.626 0.7840.7840.784 0.7760.7760.776 0.8720.8720.872 0.7790.7790.779 0.8770.8770.877 0.7630.7630.763 0.8850.8850.885
Rényi efficiency −0.701−0.701−0.701 −0.704−0.704−0.704 0.074 −0.014 −0.218 −0.366 −0.578−0.578−0.578 −0.498

Tokenization MorphScore---no frequency scaling & one-token words
Recall −0.154 −0.280 −0.179 −0.694 −0.364 −0.305 −0.459 −0.545
Precision 0.063 −0.147 0.200 −0.238 −0.102 −0.084 −0.116 −0.203

MorphScore---no frequency scaling & no one-token words
Recall −0.356 −0.409 −0.487 −0.788−0.788−0.788 −0.638 −0.706 −0.683 −0.782−0.782−0.782
Precision −0.201 −0.245 −0.200 −0.460 −0.465 −0.556 −0.474 −0.564

MorphScore---frequency scaling & one-token words
Recall −0.018 −0.217 0.011 −0.431 −0.182 −0.189 −0.273 −0.427
Precision 0.112 −0.154 0.294 0.049 0.277 0.175 0.165 0.203

MorphScore---frequency scaling & no one-token words
Recall −0.192 −0.264 −0.387 −0.642 −0.524 −0.638 −0.524 −0.691
Precision −0.110 −0.191 −0.287 −0.497 −0.442 −0.556 −0.360 −0.500

Note. BoldBoldBold indicates significance at the 1% level (P < 0.01), and underline indicates significance at the 5% level (P < 0.05).

Determinants of Cross-Lingual Knowledge Transferability. In
our transferability evaluation, we observed several patterns.
First, the transfer of knowledge to higher-resource versus lower-
resource languages is asymmetric, and different models show
varying transferability on the same language pairs. This suggests
that pretraining characteristics, such as the proportion and
minimum availability of a language in the pretraining corpus,
or whether a model has undergone tailored optimization, may
influence cross-lingual transferability. Second, we find that
knowledge transfer is often easier between languages with close
linguistic ties, which indicates that linguistic properties and
tokenizer design may also play important roles. In this section,
we systematically investigate the underlying factors shaping cross-
lingual knowledge transferability (Fig. 6). Specifically, we focus
on three dimensions:

1. Linguistic knowledge. We consider phylogeny (shared
ancestry), syntax (grammatical and word order structures),
phonology (sound systems), inventory (morphological or
orthographic complexity), and geography (spatial proximity
of speaker communities) (39). We hypothesize that closer
phylogenetic and syntactic relations enhance transferability
because models can reuse structural patterns, whereas phono-
logical and inventory similarity are less relevant given the
text-based nature of LLMs. Geographic proximity may have
a weaker but nonnegligible effect, as adjacent languages are
more likely to co-occur in shared contexts.

2. Pretraining characteristics. We include both data proportion
(the sum and the minimum across two languages) and tailored
optimization (coded as 2 if both languages are officially
supported, 1 if only one is, and 0 if neither is) (26). We
hypothesize that larger data proportions and stronger tailored
optimization will boost transfer, since greater data exposure
helps models capture grammar, vocabulary, and semantics
more consistently.

3. Tokenization quality. We consider vocabulary overlap [mea-
sured by Jensen–Shannon divergence (36)] and subword

token alignment [measured by the Eflomal score, which
captures how well subword tokens can be statistically aligned
in parallel text (40)]. We hypothesize that higher vocabulary
overlap (shared representations) and stronger subword align-
ment (frequent co-occurrence) both facilitate transfer.

As shown in Table 2, the results support these hypotheses.
Among linguistic metrics, phylogenetic and syntactic distance are
significantly correlated with transferability, whereas phonological
and inventory distance show little effect. Geographic distance
displays a weak but detectable correlation, possibly because
spatially adjacent languages are more likely to appear together in
text. For pretraining characteristics, both the total and minimum
data proportion, as well as the presence of tailored optimization,
substantially affect transfer, which highlights the importance
of careful pretraining design. Finally, among tokenization-
related metrics, subword alignment (Eflomal score) emerges
as the strongest predictor and outperforms simple vocabulary
overlap. Literal overlap measures often assign large distances to
language pairs with distinct scripts and limit their explanatory
power, whereas alignment scores better capture cross-script
relationships.

Modeling of Cross-Lingual Knowledge Transferability. Based
on the above findings, we now turn to the question of how
well the identified factors can quantitatively predict crosslingual
knowledge transferability (47). To this end, we conduct both
linear and nonlinear modeling and use linguistic, pretraining,
and tokenization-related features that are strongly correlated
with transferability to predict model accuracy when knowledge
injected in one language is queried in another (Fig. 6).

For the linear modeling, we first confirm that the selected
features-including phylogenetic, syntactic, and geographic dis-
tance, data proportion (sum and minimum), tailored optimi-
zation, and Eflomal score-show no multicollinearity (SI Appendix,
Table S8). We then conduct exhaustive feature selection by
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A B

Fig. 6. (A) We investigate the factors that influence model performance across high-, medium-, and low-resource languages, as well as the transferability
of knowledge between languages, by conducting exploratory analyses and both linear and nonlinear modeling. (B) We further identify overlaps in linguistic
neurons and analyze how these overlaps relate to the transferability of knowledge across languages.

evaluating all possible feature combinations (41). Specifically, we
run fivefold cross-validation and use adjusted r2 to identify the
best sets of predictors. To enhance interpretability, we tally the
frequency with which each feature appears in the best-feature lists.
As shown in Table 3, the regression achieves adjusted r2 values
above 0.9 and demonstrates the high predictability of cross-
lingual knowledge transferability (predictability is somewhat
lower for GPT-4o-Mini due to the absence of indicators related to
tailored optimization). SI Appendix, Table S9 further highlights

the frequency of each feature in best-feature lists, with data
proportion, phylogenetic distance, and Eflomal scores as the
most important features. To validate feature importance, we also
perform single-step regression ablations by removing one feature
at a time from a full-feature model and examining the change in
adjusted r2. We use this change as a proxy for feature importance,
and the ranking (SI Appendix, Table S9) again underscores the
dominant role of data proportion, phylogenetic distance, and
Eflomal scores.

Table 2. Spearman correlations between different features and cross-lingual knowledge transferability
Spearman correlation

GPT-4o-Mini Llama-3.1-8B Qwen3-8B Aya-Expanse-8B

Technique Category Factor Fictional Medical Fictional Medical Fictional Medical Fictional Medical

In-context learning Linguistic Phylogenetic distance −0.334−0.334−0.334 −0.431−0.431−0.431 −0.348−0.348−0.348 −0.507−0.507−0.507 −0.215−0.215−0.215 −0.386−0.386−0.386 −0.408−0.408−0.408 −0.532−0.532−0.532
Syntactic distance −0.356−0.356−0.356 −0.385−0.385−0.385 −0.439−0.439−0.439 −0.482−0.482−0.482 −0.375−0.375−0.375 −0.470−0.470−0.470 −0.469−0.469−0.469 −0.515−0.515−0.515
Phonological distance 0.107 −0.029 −0.024 −0.163 0.006 −0.110 −0.045 −0.110
Inventory distance −0.027 −0.111 −0.042 −0.201−0.201−0.201 0.058 −0.070 −0.030 −0.123
Geographic distance −0.099 −0.206−0.206−0.206 −0.238−0.238−0.238 −0.298−0.298−0.298 −0.163 −0.260−0.260−0.260 −0.263−0.263−0.263 −0.339−0.339−0.339

Pretraining Data proportion (Sum) 0.8570.8570.857 0.7340.7340.734 0.9050.9050.905 0.7190.7190.719 0.9320.9320.932 0.8250.8250.825 0.8280.8280.828 0.6490.6490.649
Data proportion (Min) 0.7850.7850.785 0.6740.6740.674 0.8880.8880.888 0.6600.6600.660 0.8930.8930.893 0.7770.7770.777 0.7580.7580.758 0.5790.5790.579
Tailored optimization - - 0.5760.5760.576 0.5730.5730.573 0.6840.6840.684 0.5670.5670.567 0.7610.7610.761 0.6260.6260.626

Tokenization & proxy Vocabulary overlap −0.037 −0.268−0.268−0.268 −0.113 −0.389−0.389−0.389 −0.055 −0.321−0.321−0.321 −0.244−0.244−0.244 −0.497−0.497−0.497
Eflomal score −0.487−0.487−0.487 −0.616−0.616−0.616 −0.625−0.625−0.625 −0.719−0.719−0.719 −0.364−0.364−0.364 −0.520−0.520−0.520 −0.528−0.528−0.528 −0.623−0.623−0.623
Neuron overlap - - 0.154 −0.025 0.3190.3190.319 0.2220.2220.222 0.2770.2770.277 0.2560.2560.256

Fine-tuning Linguistic Phylogenetic distance −0.397−0.397−0.397 −0.418−0.418−0.418 −0.413−0.413−0.413 −0.545−0.545−0.545 −0.316−0.316−0.316 −0.343−0.343−0.343 −0.325−0.325−0.325 −0.468−0.468−0.468
Syntactic distance −0.530−0.530−0.530 −0.470−0.470−0.470 −0.499−0.499−0.499 −0.509−0.509−0.509 −0.466−0.466−0.466 −0.462−0.462−0.462 −0.460−0.460−0.460 −0.510−0.510−0.510
Phonological distance 0.011 −0.030 −0.098 −0.225−0.225−0.225 −0.026 −0.116 −0.002 −0.110
Inventory distance −0.058 −0.132 −0.060 −0.271−0.271−0.271 −0.006 −0.015 0.059 −0.074
Geographic distance −0.277−0.277−0.277 −0.254−0.254−0.254 −0.318−0.318−0.318 −0.393−0.393−0.393 −0.235−0.235−0.235 −0.277−0.277−0.277 −0.214−0.214−0.214 −0.302−0.302−0.302

Pretraining Data proportion (Sum) 0.8550.8550.855 0.7640.7640.764 0.8520.8520.852 0.6360.6360.636 0.9150.9150.915 0.8880.8880.888 0.8820.8820.882 0.7560.7560.756
Data proportion (Min) 0.8450.8450.845 0.6880.6880.688 0.8670.8670.867 0.5800.5800.580 0.8990.8990.899 0.8180.8180.818 0.8400.8400.840 0.6540.6540.654
Tailored optimization - - 0.5110.5110.511 0.4180.4180.418 0.7550.7550.755 0.5720.5720.572 0.8000.8000.800 0.7340.7340.734

Tokenization & proxy Vocabulary overlap −0.115 −0.300−0.300−0.300 −0.141 −0.526−0.526−0.526 −0.168 −0.246−0.246−0.246 −0.105 −0.415−0.415−0.415
Eflomal score −0.670−0.670−0.670 −0.652−0.652−0.652 −0.666−0.666−0.666 −0.765−0.765−0.765 −0.470−0.470−0.470 −0.439−0.439−0.439 −0.446−0.446−0.446 −0.565−0.565−0.565
Neuron overlap - - 0.158 −0.051 0.3440.3440.344 0.2440.2440.244 0.2910.2910.291 0.2080.2080.208

Note. BoldBoldBold indicates significance at the 1% level (P < 0.01), and underline indicates significance at the 5% level (P < 0.05).
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Table 3. The performance of linear and nonlinear models in capturing cross-lingual knowledge transferability
Modeling Technique Dataset GPT-4o-Mini Llama-3.1-8B Qwen3-8B Aya-Expanse-8B

Linear (adjusted R2) In-context learning Fictional 0.637 0.922 0.914 0.840
Medical 0.536 0.806 0.803 0.786

Fine-tuning Fictional 0.862 0.892 0.901 0.890
Medical 0.790 0.852 0.909 0.896

Nonlinear (MAE) In-context learning Fictional 2.4% 3.6% 3.7% 5.5%
Medical 3.1% 5.0% 4.7% 5.0%

Fine-tuning Fictional 3.2% 3.1% 2.3% 2.6%
Medical 3.5% 3.7% 2.6% 2.8%

Note. MAE is expressed in percentage (%) because it measures the absolute error of accuracy, which is itself a percentage.

For the nonlinear modeling, Random Forest regressors with
fivefold cross-validation achieve mean absolute errors below
5% (Table 3), which provides further evidence of the strong
predictability of cross-lingual transferability. SHAP analysis
(SI Appendix, Fig. S4) offers additional interpretability and
once again highlights the importance of data proportion,
phylogenetic distance, and Eflomal scores. These findings suggest
that future LLM development should carefully account for
linguistic properties, balance the representation of different lan-
guages in pretraining corpora, and design high-quality tokenizers
to make models more inclusive and beneficial across languages.

Neuron-Based Interventions. The analyses above highlight how
external factors-such as linguistic properties, pretraining char-
acteristics, and tokenizer design-shape cross-lingual knowledge
transferability. To gain deeper insight into why models behave
differently across languages, we now turn to their internal
representations (Fig. 6). Prior research suggests that LLMs
contain linguistic neurons responsible for processing vocabulary,
grammar, and idiomatic expressions in individual languages (23).
In this section, we investigate how the organization and overlap
of these neurons relate to cross-lingual transferability.

Following earlier studies (24), we assume that linguistic
neurons are primarily located in the Feed-Forward Network
(FFN) layers. For each language Lk, we measure the activation
frequency of every neuron when processing its tokens. A neuron
is considered activated if its activation exceeds zero. The top
N neurons ranked by activation frequency are then collected
into a language-related set Tk. For any two languages Lu and
Lv, the overlap of their neurons is defined as the intersection of
these sets: Tu,v = Tu ∩ Tv. As shown in Table 2, greater neuron
overlap is indeed associated with stronger transferability between
languages.

To further probe this relationship and explore possible
mitigation strategies for linguistic inequalities, we conduct
targeted interventions on the overlapping neurons. Specifically,
for randomly selected language pairs, we either deactivate their
overlapping neurons by setting activations to zero or enforce
activation by maintaining them at a high value. The results
(Fig. 7) show that knowledge transferability between intervened
language pairs is significantly affected: Deactivation leads to
a marked decline, while enforced activation yields moderate
improvements. Importantly, the performance of other language
pairs remains largely unchanged. However, the gains from
activation are smaller than the losses from deactivation, which
suggests that while overlapping neurons mediate cross-lingual
transfer, their potential to reduce inequalities is limited. Fully
addressing linguistic inequalities may ultimately require changes
at the model development stage-for example, by balancing
pretraining data proportions and improving tokenizer quality.

Discussion

This study focused on revealing, analyzing, and mitigat-
ing linguistic inequalities in new knowledge learning by
LLMs. We first presented a comprehensive evaluation frame-
work across four key dimensions—effectiveness, transferability,
prioritization, and robustness—and found that LLMs face
greater challenges when learning new knowledge in lower-
resource languages. Additionally, new knowledge is more easily
transferred to higher-resource languages, and knowledge in
higher-resource languages is often prioritized. Moreover, LLMs
are better protected from misinformation in higher-resource
languages.

Our analyses further show the underlying causes of these
inequalities. First, linguistic relatedness matters: Closer phy-
logenetic and syntactic distances are associated with higher
transferability. Second, pretraining characteristics, particularly
the data proportion of each language and language-specific op-
timizations, emerge as strong predictors of performance. Third,
tokenizer design substantially influences outcomes: Tokenizers
that achieve efficient compression and produce information-rich
tokenizations, where the vocabulary of a language is distributed
across a large number of tokens, tend to correlate with stronger
learning. These findings indicate that inequalities are not random
artifacts but are systematically embedded in model inputs,
architectures, and training dynamics.

We also investigated potential mitigation strategies through
neuron-based interventions. By identifying overlapping linguistic
neurons and experimentally manipulating them, we found that
these neurons can indeed mediate cross-lingual transfer. Deacti-
vation sharply reduced transferability, while enforced activation
alleviated disparities to a notable-though incomplete-extent.

These findings have important implications. For developers,
addressing linguistic inequalities is essential to ensure that
LLMs serve users of all languages equitably, which will re-
quire investments in data collection, tokenizer refinement, and
fairness-driven model design. For researchers, future work could
extend beyond static evaluations and evaluate the multilin-
gual capabilities of LLMs along multiple dimensions. Cross-
disciplinary research, particularly in collaboration with linguists
and sociologists, is also needed to explore the broader soci-
etal impacts of LLM inequalities, such as the perpetuation
of linguistic hegemony. Finally, for users, especially those of
lower-resource languages, raising awareness about these lim-
itations is crucial to foster informed and critical use of AI
systems.

While this study provides key insights, it also has several
limitations. First, we conducted our experiments using a limited
set of models and datasets in a limited number of languages.
Although the consistency of our findings across both open-
source and proprietary models suggests the generalizability of our
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Fig. 7. Effectiveness of intervening in overlapping linguistic neurons. Deactivating such neurons for a language pair reduces knowledge transfer between the
two languages with little effect on others, whereas activating them enhances transfer between the pair with minimal impact on other languages.

conclusions, future studies could extend this analysis to a broader
range of models and across a larger group of languages. Second,
while neuron-based interventions provide insight into potential
mitigation pathways, they remain preliminary and insufficient
for resolving entrenched disparities rooted in data imbalance and
tokenizer design. Future research should explore more effective
strategies to enhance multilingual capabilities and address these
disparities (48, 49).

Materials and Methods
Implementation Details. We fine-tuned GPT-4o-Mini using the official OpenAI
fine-tuning API with a batch size of 1 and a learning rate multiplier of 1.8
(22). For open-source models (Llama-3.1-8B, Qwen-3-8B, and Aya-Expanse-
8B), we adopted Low-Rank Adaptation (LoRA), a parameter-efficient fine-
tuning method, with a learning rate of 1e-4, rank 16, and scaling factor 16
(42). To evaluate model responses, we used GPT-4o-Mini as the automatic
judge with the evaluation prompt provided in SI Appendix, Prompt S7,
and careful manual verification confirmed the accuracy and reliability of its
judgments.

Linguistic properties were derived from typological word vectors in
lang2vec, based on the URIEL database (39). Tokenization-related metrics,
including corpus token count, average rank, Rényi efficiency, and vocabu-
lary overlap, were computed on the FLORES-200 corpus (43). For Eflomal
scores, alignment priors were trained using OPUS-100 for English-X pairs
and subsets of MultiCCAligned for non-English pairs (44–46), with up
to 300k sentence pairs per training corpus and FLORES-200 as the test
corpus. Morphological alignment was obtained directly using the MorphScore
library (37, 38).

Finally, both linear and nonlinear modeling were conducted with fivefold
cross-validation. For nonlinear models, we employed Random Forest estimators
with 200 trees.

Data, Materials, and Software Availability. The data used in our exp-
eriments are provided in SI Appendix, Tables S10-S13. The codes are publicly
available at: https://github.com/Bonj0ur/LNewKnow (50).
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